ABSTRACT
Faecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent detection in wastewater turned the spotlight onto wastewater-based epidemiology (WBE) for monitoring the coronavirus-disease 2019 (COVID-19) pandemic. WBE for SARS-CoV-2 has been deployed in 70 countries, providing insights into disease prevalence, forecasting and the spatiotemporal tracking and emergence of SARS-CoV-2 variants. Wastewater, however, is a complex sample matrix containing numerous reverse transcription quantitative PCR (RT-qPCR) inhibitors whose concentration and diversity are influenced by factors including population size, surrounding industry and agriculture and climate. Such differences in the RT-qPCR inhibitor profile are likely to impact the quality of data produced by WBE and potentially produce erroneous results.To help determine the possible impact of RT-qPCR assay on data quality, two assays employed by different laboratories within the UK's SARS-CoV-2 wastewater monitoring programme were assessed in the Cefas laboratory in Weymouth, UK. The assays were based on Fast Virus (FV) and qScript (qS) chemistries using the same primers and probes, but at different concentrations and under different cycling conditions. Bovine serum albumin and MgSO4 were also added to the FV assay reaction mixture. Two-hundred and eighty-six samples were analysed, and an external control RNA (EC RNA)-based method was used to measure RT-qPCR inhibition. Compared with qS, FV showed a 40.5% reduction in mean inhibition and a 57.0% reduction in inter-sample inhibition variability. A 4.1-fold increase in SARS-CoV-2 quantification was seen for FV relative to qS; partially due (1.5-fold) to differences in reverse transcription efficiency and the use of a dsDNA standard. Analytical variability was reduced by 51.2% using FV while qS increased the number of SARS-CoV-2 negative samples by 2.6-fold. This study indicates the importance of thorough method optimisation for RT-qPCR-based WBE which should be performed using a selection of samples which are representative of the physiochemical properties of wastewater. Furthermore, RT-qPCR inhibition, analytical variability and reverse transcription efficiency should be key considerations during assay optimisation. A standardised framework for the optimisation and validation of WBE procedures should be formed including concessions for emergency response situations that would allow flexibility in the process to address the difficult balance between the urgency of providing data and the availability of resources.
Subject(s)
COVID-19 , Reverse Transcription , Humans , RNA, Viral , Wastewater , SARS-CoV-2 , Polymerase Chain ReactionABSTRACT
BACKGROUND This retrospective population study identified 385 191 positive real-time reverse transcription-polymerase chain reaction (RT-PCR) tests for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a single laboratory in Katowice, Poland, from April 2020 to July 2022. MATERIAL AND METHODS The material was nasopharyngeal, nasopharyngeal swab or bronchial lavage, and bronchoalveolar lavage (BAL) to confirm or exclude SARS-CoV-2 infection with the RT-PCR technique. Personal data are use according to the Provisions on the Protection of Personal Data by the Gyn-Centrum laboratory. RESULTS In 9 months of 2020, the number of SARS-CoV-2 results was 88 986; in 2021, it was 168 439, and in the first 7 months of 2022, it was 12 786. In 2020, the highest number of positive results was recorded in the third quarter (83 094 cases); 2021, in the 1st, 2nd, and 4th quarters (58 712; 37 720; and 71 753 cases, respectively), and in 2022, in the 1st quarter (127 613 cases) of the year. A positive result was observed more often in women and people aged 30-39, followed by those 40-49 years. Patients aged 10-19 years comprised the smallest population of SARS-CoV-2-positive cases. CONCLUSIONS In the Polish population studied, from April 2020 to July 2022, the detection rates of SARS-CoV-2 positivity were significantly higher for women than for men and in the 30-49 age group for both sexes. Also, the infection detection rate of 385 191 out of 1 332 659 patient samples, or 28.9%, supports that the Polish society adhered to public health recommendations for infection control during the COVID-19 pandemic.
Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Female , Adult , Middle Aged , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Poland/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Pandemics , Retrospective Studies , Real-Time Polymerase Chain Reaction , COVID-19 TestingABSTRACT
BACKGROUND: Measures for mitigation of Coronavirus Disease 2019 (COVID-19) were set to reduce the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 and other respiratory viruses share similar transmission routes and some common clinical manifestations. Co-circulation of SARS-CoV-2 and other common respiratory viruses is imminent. Therefore, development of multiplex assays for detecting these respiratory viruses is essential for being prepared for future outbreaks of respiratory viruses. METHODS: A panel of three reverse transcription droplet digital PCR (RT-ddPCR) assays were developed to detect 15 different human respiratory viruses. Evaluations of its performance were demonstrated. A total of 100 local and 98 imported COVID-19 cases in Hong Kong were screened for co-infection with other common respiratory viruses. RESULTS: All detected viral targets showed distinct signal clusters using the multiplex RT-ddPCR assays. These assays have a broad range of linearity and good intra-/inter-assay reproducibility for each target. The lower limits of quantification for all targets were ≤46 copies per reaction. Six imported cases of COVID-19 were found to be co-infected with other respiratory viruses, whereas no local case of co-infection was observed. CONCLUSIONS: The multiplex RT-ddPCR assays were demonstrated to be useful for screening of respiratory virus co-infections. The strict preventive measures applied in Hong Kong may be effective in limiting the circulation of other human respiratory viruses. The multiplex assays developed in this study can achieve a robust detection method for clinical and research purposes.
Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2 , COVID-19/diagnosis , Reverse Transcription , Coinfection/diagnosis , Coinfection/epidemiology , Reproducibility of Results , Real-Time Polymerase Chain Reaction/methodsABSTRACT
OBJECTIVES: During the third wave, the growing number of COVID-19 case clusters reported countrywide in Thailand demonstrated the rapidly evolving characteristics of SARS-CoV-2, the causative agent of the COVID-19 pandemic. The rapid spread of COVID-19 infections had been extensively reported in public areas and construction camps, as well as in congested communities with poor sanitation. High demand for SARS-CoV-2 genome testing and quick reporting by an hour for case identification and isolation characterizes the COVID-19 crisis in Thailand. This situation leads to an urgent need for alternative molecular tests which are reliable, rapid, and cost-effective. METHODS: In this study, we assessed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP), using real-time reverse transcription-polymerase chain reaction (RT-PCR) as a reference standard, for active case finding in suspected (mostly asymptomatic) cases living in high-risk areas of Bangkok. RESULTS: The diagnostic performance of the RT-LAMP compared with real-time RT-PCR in specimens from 549 Thais were computed in a real-world field study setting. Our study demonstrated that RT-LAMP achieved robust identification of SARS-CoV-2 infection, with a diagnostic sensitivity and specificity of 91.67% and 100%, respectively. CONCLUSION: RT-LAMP is a reliable assay for SARS-CoV-2 detection and is scalable for use in the emergency response to a nationwide pandemic, despite resource limitations. The RT-LAMP real-world data derived from this field study validate its potential use in laboratory practice. RT-LAMP is a good choice as a laboratory-based SARS-CoV-2 molecular test when real-time RT-PCR is not available.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , Pandemics , Colorimetry , Thailand , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , RNA, Viral/geneticsABSTRACT
Multiple mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) increase transmission, disease severity, and immune evasion and facilitate zoonotic or anthropozoonotic infections. Four such mutations, ΔH69/V70, L452R, E484K, and N501Y, occurred in the SARS-CoV-2 spike glycoprotein in combinations that allow the simultaneous detection of VOCs. Here, we present two flexible reverse transcription-quantitative PCR (RT-qPCR) platforms for small- and large-scale screening (also known as variant PCR) to detect these mutations and schemes for adapting the platforms to future mutations. The large-scale RT-qPCR platform was validated by pairwise matching of RT-qPCR results with whole-genome sequencing (WGS) consensus genomes, showing high specificity and sensitivity. Both platforms are valuable examples of complementing WGS to support the rapid detection of VOCs. Our mutational signature approach served as an important intervention measure for the Danish public health system to detect and delay the emergence of new VOCs. IMPORTANCE Denmark weathered the SARS-CoV-2 crisis with relatively low rates of infection and death. Intensive testing strategies with the aim of detecting SARS-CoV-2 in symptomatic and nonsymptomatic individuals were available by establishing a national test system called TestCenter Denmark. This testing regime included the detection of SARS-CoV-2 signature mutations, with referral to the national health system, thereby delaying outbreaks of variants of concern. Our study describes the design of the large-scale RT-qPCR platform established at TestCenter Denmark in conjunction with whole-genome sequencing to report mutations of concern to the national health system. Validation of the large-scale RT-qPCR platform using paired WGS consensus genomes showed high sensitivity and specificity. For smaller laboratories with limited infrastructure, we developed a flexible small-scale RT-qPCR platform to detect three signature mutations in a single run. The RT-qPCR platforms are important tools to support the control of the SARS-CoV-2 endemic in Denmark.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , COVID-19/diagnosis , Polymerase Chain Reaction , MutationABSTRACT
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was initially identified in 2019, after which it spread rapidly throughout the world. With the progression of the epidemic, new variants of SARS-CoV-2 with faster transmission speeds and higher infectivity have constantly emerged. The proportions of people asymptomatically infected or reinfected after vaccination have increased correspondingly, making the prevention and control of COVID-19 extremely difficult. There is therefore an urgent need for rapid, convenient, and inexpensive detection methods. In this paper, we established a nucleic acid visualization assay targeting the SARS-CoV-2 nucleoprotein (N) gene by combining reverse transcription-recombinase polymerase amplification with closed vertical flow visualization strip (RT-RPA-VF). This method had high sensitivity, comparable to that of reverse transcription-quantitative PCR (RT-qPCR), and the concordance between RT-RPA-VF and RT-qPCR methods was 100%. This detection method is highly specific and is not compatible with bat coronavirus HKU4, human coronaviruses 229E, OC43, and HKU1-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), or other respiratory pathogens. However, multiple SARS-CoV-2 variants are detectable within 25 min at 42°C using this visual method, including RNA transcripts of the Wuhan-Hu-1 strain at levels as low as 1 copy/µL, the Delta strain at 1 copy/µL, and the Omicron strain at 0.77 copies/µL. The RT-RPA-VF method is a simple operation for the rapid diagnosis of COVID-19 that is safe and free from aerosol contamination and could be an affordable and attractive choice for governments seeking to promote their emergency preparedness and better their responses to the continuing COVID-19 epidemic. In addition, this method also has great potential for early monitoring and warning of the epidemic situation at on-site-nursing points. IMPORTANCE The global COVID-19 epidemic, ongoing since the initial outbreak in 2019, has caused panic and huge economic losses worldwide. Due to the continuous emergence of new variants, COVID-19 has been responsible for a higher proportion of asymptomatic patients than the previously identified SARS and MERS, which makes early diagnosis and prevention more difficult. In this manuscript, we describe a rapid, sensitive, and specific detection tool, RT-RPA-VF. This tool provides a new alternative for the detection of SARS-CoV-2 variants in a range as low as 1 to 0.77 copies/µL RNA transcripts. RT-RPA-VF has great potential to ease the pressure of medical diagnosis and the accurate identification of patients with suspected COVID-19 at point-of-care.
Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcription , RNA, Viral/genetics , Recombinases/genetics , Sensitivity and SpecificityABSTRACT
The importance of air purifiers has increased in recent years, especially with the "coronavirus disease 2019" pandemic. The efficacy of air purifiers is usually determined under laboratory conditions before widespread application. The standard procedure for testing depends on virus cultivation and titration on cell culture. This, however, requires several days to deliver results. The aim of this study was to establish a rapid molecular assay which can differentiate between intact infectious and distorted non-infectious virus particles. Feline Coronavirus was selected as model for screening. First the samples were pretreated with enzymes (universal nuclease and RNase cocktail enzyme mixture) or viability dye (propidium monoazide) to eliminate any free nucleic acids. The ribonucleic acid (RNA) from intact virus was released via magnetic beads-based extraction, then the amount of the RNA was determined using real-time reverse transcription polymerase chain reaction (RT-PCR) or reverse transcription recombinase-aided amplification (RT-RAA). All results were compared to the infectivity assay based on the calculation of the 50% tissue culture infectious dose (TCID50). The nuclease has eliminated 100% of the free Feline Coronavirus RNA, while propidium monoazide underperformed (2.3-fold decrease in free RNA). Both RT-RAA and real-time RT-PCR produced similar results to the infectivity assay on cell culture with limit of detection of 102 TCID50/mL. Two UV-C air purifiers with prosperities of 100% inactivation of the viruses were used to validate the established procedure. Both real-time RT-PCR and RT-RAA were able to differentiate between intact virus particles and free RNA. To conclude, this study revealed a promising rapid method to validate the efficacy of air purifiers by combining enzymatic pretreatment and molecular assays.
Subject(s)
Air Filters , Azides , Reverse Transcription , Real-Time Polymerase Chain Reaction/methods , RNA , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methodsABSTRACT
OBJECTIVES: During the third wave, the growing number of COVID-19 case clusters reported countrywide in Thailand demonstrated the rapidly evolving characteristics of SARS-CoV-2, the causative agent of the COVID-19 pandemic. The rapid spread of COVID-19 infections had been extensively reported in public areas and construction camps, as well as in congested communities with poor sanitation. High demand for SARS-CoV-2 genome testing and quick reporting by an hour for case identification and isolation characterizes the COVID-19 crisis in Thailand. This situation leads to an urgent need for alternative molecular tests which are reliable, rapid, and cost-effective. METHODS: In this study, we assessed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP), using real-time reverse transcription-polymerase chain reaction (RT-PCR) as a reference standard, for active case finding in suspected (mostly asymptomatic) cases living in high-risk areas of Bangkok. RESULTS: The diagnostic performance of the RT-LAMP compared with real-time RT-PCR in specimens from 549 Thais were computed in a real-world field study setting. Our study demonstrated that RT-LAMP achieved robust identification of SARS-CoV-2 infection, with a diagnostic sensitivity and specificity of 91.67% and 100%, respectively. CONCLUSION: RT-LAMP is a reliable assay for SARS-CoV-2 detection and is scalable for use in the emergency response to a nationwide pandemic, despite resource limitations. The RT-LAMP real-world data derived from this field study validate its potential use in laboratory practice. RT-LAMP is a good choice as a laboratory-based SARS-CoV-2 molecular test when real-time RT-PCR is not available.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , Pandemics , Colorimetry , Thailand , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , RNA, Viral/geneticsABSTRACT
Coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Though many methods have been used for detecting SARS-COV-2, development of an ultrafast and highly sensitive detection strategy to screen and/or diagnose suspected cases in the population, especially early-stage patients with low viral load, is significant for the prevention and treatment of COVID-19. In this study, a novel restriction endonuclease-mediated reverse transcription multiple cross displacement amplification (MCDA) combined with real-time fluorescence analysis (rRT-MCDA) was successfully established and performed to diagnose COVID-19 infection (COVID-19 rRT-MCDA). Two sets of specific SARS-COV-2 rRT-MCDA primers targeting opening reading frame 1a/b (ORF1ab) and nucleoprotein (NP) genes were designed and modified according to the reaction mechanism. The SARS-COV-2 rRT-MCDA test was optimized and evaluated using various pathogens and clinical samples. The optimal reaction condition of SARS-COV-2 rRT-MCDA assay was 65°C for 36 min. The SARS-COV-2 rRT-MCDA limit of detection (LoD) was 6.8 copies per reaction. Meanwhile, the specificity of SARS-COV-2 rRT-MCDA assay was 100%, and there was no cross-reaction with nucleic acids of other pathogens. In addition, the whole detection process of SARS-COV-2 rRT-MCDA, containing the RNA template processing (15 min) and real-time amplification (36 min), can be accomplished within 1 h. The SARS-COV-2 rRT-MCDA test established in the current report is a novel, ultrafast, ultrasensitive, and highly specific detection method, which can be performed as a valuable screening and/or diagnostic tool for COVID-19 in clinical application.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , COVID-19 Testing , DNA Restriction Enzymes/genetics , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , RNA, Viral/geneticsABSTRACT
COVID-19 is a disease caused by the new coronavirus SARS-CoV-2. Outbreaks were first reported in China on December 31, 2019. Exactly one month later, the WHO declared the outbreak a public health emergency of international concern, and on March 11, it was declared a pandemic. In February, the infection began to spread rapidly to various countries, with Europe declared the center. By April 17, 2020, cases had been confirmed in all subjects of the Russian Federation. At the beginning of September 2020, the number of cases exceeded one million; at November 19, two million; at December 26, three million. At February 10, 2021, four million; at May 23, five million; at July 20, six million; at September 5, seven million; at October 18, eight million; at November 13, nine million; and at December 12, 2021, ten million. The rapid spread of the virus, accompanied by a significant increase in the number of infections and deaths. A total of about 18.6 million cases were recorded at the end of the first half of 2022. The total number of deaths from coronavirus in Russia at that time was 382,313 (2.06% of all cases). The number of tests performed by various analytical methods amounted to over 274, 5 million, i.e. 1.9 million per 1 million population. The rapid spread and the increase in new infections caused by SARS-CoV-2 made it necessary to use new epidemiological and diagnostic approaches based on fast, accurate and reliable technology for detecting the infectious agent. One such virus detection method is polymerase chain reaction with reverse transcription and real-time detection of the results. The review presents the domestic market offerings of PCR diagnostic kits and provides their comparative consumer characteristics.
Subject(s)
COVID-19 , Reverse Transcription , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Real-Time Polymerase Chain ReactionABSTRACT
This study evaluated the BD Veritor system for rapid detection of SARS-CoV-2, an immunochromatographic point-of-care test, by comparing it with a standard reverse transcription-PCR (RT-PCR) methodology using samples from symptomatic patients. Samples from 146 symptomatic and 2 asymptomatic patients between the 1st and the 40th day of infection were evaluated. The nasopharyngeal and/or oropharyngeal swabs were inserted in a tube containing 0.9% saline solution and stored at refrigerator temperature until the moment of use. The samples were first tested with the Xpert Xpress SARS-CoV-2 (GeneXpert) kit (RT-PCR method), and the cycle thresholds (CTs) for the E and N2 genes encoding the SARS-CoV-2 envelope and nucleoprotein, respectively, were established. Subsequently, the same samples were tested using the Veritor rapid test. We analyzed the CTs of the N2 gene, which is detected in both methodologies, and observed sensitivities of 100%, 98.8%, 89.6%, and 82.7% for the CTs of <25, <27, and <30 and all the CTs, respectively. The greatest sensitivity was observed when we performed the test on patients within 5 days of symptom onset. The BD Veritor system's workflow is simple and fast, taking approximately 16 min from sample preparation to obtaining the test result. In addition to its satisfactory sensitivity, with results that correlate with those of the RT-PCR, the BD Veritor analyzer instrument reduces the subjectivity of unaided visual readings and consequent potential variation in result interpretation. Therefore, our results showed that the BD Veritor diagnostic test can provide a rapid and accurate diagnosis for SARS-CoV-2. IMPORTANCE This study provides important and useful information, especially for diagnostic laboratories, since the results show that the BD Veritor system can provide a fast and safe point-of-care antigen diagnostic test for rapid detection of COVID-19 that has high sensitivity, reproducibility, and accuracy.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Reverse Transcription , Reproducibility of Results , Saline Solution , Sensitivity and Specificity , Polymerase Chain Reaction , Nucleoproteins/geneticsABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread over the world since its emergence. Although the dominant route of SARS-CoV-2 infection is respiratory, a number of studies revealed infection risk from contaminated surfaces and products, including porcine-derived food and other products. The SARS-CoV-2 outbreak has been severely threatening public health, and disrupting porcine products trade and the pig industry. Swine acute diarrhea syndrome coronavirus (SADS-CoV), which was responsible for large-scale, fatal disease in piglets, emerged in 2017 and has caused enormous economic losses in the pig industry. Currently, reverse transcription real-time PCR (RT-rPCR) is the gold standard method for SARS-CoV-2 diagnosis and is most commonly used for SADS-CoV detection. However, inaccurate detection of the SARS-CoV-2 infection obtained by RT-rPCR is increasingly reported, especially in specimens with low viral load. OBJECTIVE: This study aimed to develop an accurate reverse transcription droplet digital PCR (RT-ddPCR) assay for the detection of SARS-CoV-2 and SADS-CoV simultaneously. METHODS: Two pairs of primers and one double-quenched probe targeting the RNA-dependent RNA polymerase (RDRP) region of the open reading frame 1ab (ORF1ab) gene of SARS-CoV-2 and the corresponding ORF1ab region of SADS-CoV were designed to develop the RT-ddPCR assay. The sensitivity, specificity, repeatability, and reproducibility were tested using complementary RNAs (cRNAs) and clinical specimens. RESULTS: The detection limits of RT-ddPCR were 1.48 ± 0.18 and 1.38 ± 0.17 copies in a 20 µL reaction for SARS-CoV-2 and SADS-CoV cRNAs, respectively (n = 8), showing approximately 4- and 10-fold greater sensitivity than the RT-rPCR assay. This assay also exhibited good specificity, repeatability, and reproducibility. CONCLUSION: The established RT-ddPCR assay was shown to be a highly effective, accurate, and reliable method for the sensitive detection of SARS-CoV-2 and SADS-CoV. HIGHLIGHTS: This RT-ddPCR assay could be used to detect both SARS-CoV-2 and SADS-CoV in a sample with one double-quenched probe, and is also the first reported RT-ddPCR assay for SADS-CoV detection.
Subject(s)
COVID-19 , SARS-CoV-2 , Alphacoronavirus , Animals , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Reverse Transcription , SARS-CoV-2/genetics , Sensitivity and Specificity , SwineABSTRACT
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since it infected humans almost 3 years ago. Improvements of current assays and the development of new rapid tests or to diagnose SARS-CoV-2 are urgent. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and propitious assay, allowing to detect both colorimetric and/or fluorometric nucleic acid amplifications. This study describes the analytical and clinical evaluation of RT-LAMP assay for detection of SARS-CoV-2, by designing LAMP primers targeting N (nucleocapsid phosphoprotein), RdRp (polyprotein), S (surface glycoprotein), and E (envelope protein) genes. The assay's performance was compared with the gold standard RT-PCR, yielding 94.6% sensitivity and 92.9% specificity. Among the tested primer sets, the ones for S and N genes had the highest analytical sensitivity, showing results in about 20 min. The colorimetric and fluorometric comparisons revealed that the latter is faster than the former. The limit of detection (LoD) of RT-LAMP reaction in both assays is 50 copies/µl of the reaction mixture. However, the simple eye-observation advantage of the colorimetric assay (with a color change from yellow to red) serves a promising on-site point-of-care testing method anywhere, including, for instance, laboratory and in-house applications.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , Colorimetry/methods , COVID-19/diagnosis , COVID-19/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , RNA, Viral/geneticsABSTRACT
Widely available and reliable testing for SARS-CoV-2 is essential for the public health response to the COVID-19 pandemic. We estimated the diagnostic performance of reverse transcription PCR (RT-PCR) performed on saliva and the SD Biosensor STANDARD Q antigen test performed on nasopharyngeal swab compared to the reference standard, nasopharyngeal swab (NP) RT-PCR. We enrolled participants living and/or seeking care in health facilities in North Lima, Peru from November 2020 to January 2021. Consenting participants underwent same-day RT-PCR on both saliva and nasopharyngeal swab specimens, antigen testing on a nasopharyngeal swab specimen, pulse oximetry, and standardized symptom assessment. We calculated sensitivity, specificity, and predictive values for the nasopharyngeal antigen and saliva RT-PCR compared to nasopharyngeal RT-PCR. Of 896 participants analyzed, 567 (63.3%) had acute signs/symptoms of COVID-19. The overall sensitivity and specificity of saliva RT-PCR were 85.8% and 98.1%, respectively. Among participants with and without acute signs/symptoms of COVID-19, saliva sensitivity was 87.3% and 37.5%, respectively. Saliva sensitivity was 97.4% and 56.0% among participants with cycle threshold (CT) values of ≤30 and >30 on nasopharyngeal RT-PCR, respectively. The overall sensitivity and specificity of nasopharyngeal antigen were 73.2% and 99.4%, respectively. The sensitivity of the nasopharyngeal antigen test was 75.1% and 12.5% among participants with and without acute signs/symptoms of COVID-19, and 91.2% and 26.7% among participants with CT values of ≤30 and >30 on nasopharyngeal RT-PCR, respectively. Saliva RT-PCR achieved the WHO-recommended threshold of >80% for sensitivity for the detection of SARS-CoV-2, while the SD Biosensor nasopharyngeal antigen test did not. IMPORTANCE In this diagnostic validation study of 896 participants in Peru, saliva reverse transcription PCR (RT-PCR) had >80% sensitivity for the detection of SARS-CoV-2 among all-comers and symptomatic individuals, while the SD Biosensor STANDARD Q antigen test performed on nasopharyngeal swab had <80% sensitivity, except for participants whose same-day nasopharyngeal RT-PCR results showed cycle threshold values of <30, consistent with a high viral load in the nasopharynx. The specificity was high for both tests. Our results demonstrate that saliva sampling could serve as an alternative noninvasive technique for RT-PCR diagnosis of SARS-CoV-2. The role of nasopharyngeal antigen testing is more limited; when community transmission is low, it may be used for mass screenings among asymptomatic individuals with high testing frequency. Among symptomatic individuals, the nasopharyngeal antigen test may be relied upon for 4 to 8 days after symptom onset, or in those likely to have high viral load, whereupon it showed >80% sensitivity.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Pandemics , Peru/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2/genetics , Saliva , Specimen HandlingABSTRACT
CONTEXT.: Reverse transcription-polymerase chain reaction (RT-PCR) is the standard method of diagnosing COVID-19. An inconclusive test result occurs when 1 RT-PCR target is positive for SARS-CoV-2 and 1 RT-PCR target is negative for SARS-CoV-2 within the same sample. An inconclusive result generally requires retesting. One reason why a sample may yield an inconclusive result is that one target is at a higher concentration than another target. OBJECTIVE.: To understand the role of subgenomic RNA transcripts in discordant results from RT-PCR tests for COVID-19. DESIGN.: A panel of 6 droplet digital PCR assays was designed to quantify the ORF1, E-gene, and N-gene of SARS-CoV-2. This panel was used to quantify viral cultures of SARS-CoV-2 that were harvested during the eclipse phase and at peak infectivity. Eleven clinical nasopharyngeal swabs were also tested with this panel. RESULTS.: In culture, infected cells showed higher N-gene/ORF1 copy ratios than culture supernatants. The same trends in the relative abundance of copies across different targets observed in infected cells were observed in clinical samples, although trends were more pronounced in infected cells. CONCLUSIONS.: This study showed that a greater copy number of N-gene relative to E-gene and ORF1 transcripts could potentially explain inconclusive results for some RT-PCR tests on low viral load samples. The use of N-gene RT-PCR target(s) as opposed to ORF1 targets for routine testing is supported by these data.
Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , RNA , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2/geneticsABSTRACT
OBJECTIVES: To evaluate the performance of oral saliva swab (OSS) reverse transcription PCR (RT-PCR) compared with RT-PCR and antigen rapid diagnostic test (Ag-RDT) on nasopharyngeal swabs (NPS) for SARS-CoV-2 in children. DESIGN: Cross-sectional multicentre diagnostic study. SETTING: Study nested in a prospective, observational cohort (EPICO-AEP) performed between February and March 2021 including 10 hospitals in Spain. PATIENTS: Children from 0 to 18 years with symptoms compatible with Covid-19 of ≤5 days of duration were included. Two NPS samples (Ag-RDT and RT-PCR) and one OSS sample for RT-PCR were collected. MAIN OUTCOME: Performance of Ag-RDT and RT-PCR on NPS and RT-PCR on OSS sample for SARS-CoV-2. RESULTS: 1174 children were included, aged 3.8 years (IQR 1.7-9.0); 73/1174 (6.2%) patients tested positive by at least one of the techniques. Sensitivity and specificity of OSS RT-PCR were 72.1% (95% CI 59.7 to 81.9) and 99.6% (95% CI 99 to 99.9), respectively, versus 61.8% (95% CI 49.1 to 73) and 99.9% (95% CI 99.4 to 100) for the Ag-RDT. Kappa index was 0.79 (95% CI 0.72 to 0.88) for OSS RT-PCR and 0.74 (95% CI 0.65 to 0.84) for Ag-RDT versus NPS RT-PCR. CONCLUSIONS: RT-PCR on the OSS sample is an accurate option for SARS-CoV-2 testing in children. A less intrusive technique for younger patients, who usually are tested frequently, might increase the number of patients tested.
Subject(s)
COVID-19 , Child , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Saliva , Reverse Transcription , Prospective Studies , Cross-Sectional Studies , Sensitivity and Specificity , Polymerase Chain ReactionABSTRACT
CONTEXT.: Diagnostic testing for SARS-CoV-2 in symptomatic and asymptomatic children remains integral to care, particularly for supporting return to and attendance in schools. The concordance of SARS-CoV-2 detection in children, using various specimen types, has not been widely studied. OBJECTIVE.: To compare 3 sample types for SARS-CoV-2 polymerase chain reaction (PCR) testing in children, collected and tested at a single facility. DESIGN.: We prospectively recruited 142 symptomatic and asymptomatic children/young adults into a sample comparison study performed in a single health care system. Each child provided self-collected saliva, and a trained health care provider collected a mid-turbinate nasal swab and nasopharyngeal (NP) swab. Specimens were assayed within 24 hours of collection by using reverse transcription-polymerase chain reaction (RT-PCR) to detect SARS-CoV-2 on a single testing platform. RESULTS.: Concurrently collected saliva and mid-turbinate swabs had greater than 95% positive agreement with NP swabs when obtained within 10 days of symptom onset. Positive agreement of saliva and mid-turbinate samples collected from children with symptom onset >10 days prior, or without symptoms, was 82% compared to NP swab samples. Cycle threshold (Ct) values for mid-turbinate nasal samples more closely correlated with Ct values from NP samples than from saliva samples. CONCLUSIONS.: These findings suggest that all 3 sample types from children are useful for SARS-CoV-2 diagnostic testing by RT-PCR, and that concordance is greatest when the child has had symptoms of COVID-19 within the past 10 days. This study provides scientific justification for using sample types other than the NP swab for SARS-CoV-2 testing in pediatric populations.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Child , Humans , Nasopharynx , Outpatients , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods , Turbinates , Young AdultABSTRACT
Droplet digital polymerase chain reaction (ddPCR) is a third generation of PCR that was recently developed to overcome the limitation of direct quantification observed in real-time quantification PCR (qPCR). Recent studies have shown that ddPCR is more sensitive than the gold standard reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) in detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) samples. In combination with multiplexing, multiple RT-ddPCR assays can be developed to directly quantify different SARS-CoV-2 nucleic acid targets within a single sample, significantly saving on cost and time. Since ddPCR is tolerant to a number of inhibitors unlike qPCR, it can be used to detect and quantify samples from complex environments like wastewater. Here we present three one-step RT-ddPCR protocols on how to develop simplex (one target), duplex (two targets), and triplex probe mix (three targets) assays for SARS-CoV-2 detection and quantification. The assays can be used for diagnosis or other research-related SARS-CoV-2 applications.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , SARS-CoV-2/geneticsABSTRACT
Coronavirus disease 2019 is a public health challenge requiring rapid testing for the detection of infections and transmission. Nucleic acid amplification tests targeting SARS coronavirus 2 (CoV2) are used to detect CoV2 in clinical samples. Real-time reverse transcription quantitative PCR is the standard nucleic acid amplification test for CoV2, although reverse transcription loop-mediated isothermal amplification is used in diagnostics. The authors demonstrate a sequence-specific reverse transcription loop-mediated isothermal amplification-based nucleic acid amplification assay that is finished within 30 min using minimally processed clinical nasal swab samples and describe a fluorescence-quenched reverse transcription loop-mediated isothermal amplification assay using labeled primers and a quencher oligonucleotide. This assay can achieve rapid (30 min) and sensitive (1000 plaque-forming units/ml) fluorescence detection of CoV2 (WA1/2020), B.1.1.7 (Alpha) and variants of concern Delta (B.1.617.2) and Omicron (B.1.1.529) in nasal samples.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Reverse Transcription , SARS-CoV-2/genetics , Sensitivity and SpecificityABSTRACT
Purpose: To assess the rapid antigen test (RAT) against the gold standard reverse transcription-polymerase chain reaction (RT-PCR) to screen COVID-19 infection in asymptomatic patients undergoing ophthalmic procedures. Methods: This was a retrospective hospital-based study. Point-of-care (PoC) RAT was performed using nasopharyngeal swab, while RT-PCR for SARS-CoV-2 viral RNA was performed using both nasopharyngeal and throat swabs. Results: A total of 629 patients were tested for SARS-CoV-2 by using both RAT and RT-PCR. Only one patient had tested positive for SARS-CoV-2 with both RAT and RT-PCR, while two patients had tested positive with RT-PCR after an initial negative RAT. The positivity rate for RAT was 0.15% (1/629), and that for RT-PCR was 0.47%. Percent agreement or proportion of agreement observed between the two tests was 99.68%, while Cohen's kappa coefficient value was 0.49. The sensitivity of RAT in comparison to RT-PCR was 33.33%, specificity was 100%, positive predictive value was 100%, and negative predictive value was 99.68%. Conclusion: The sensitivity and Cohen's kappa coefficient in our study were low but that can be attributed to the overall low positivity rates with both RAT and RT-PCR. However, percent agreement observed between the two tests was very high. Therefore, we recommend initial screening of all the patients for COVID-19 symptoms followed by RAT before performing any ophthalmic surgical procedure to ensure the safety of the health care professionals as well as the patients.