Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Eur Rev Med Pharmacol Sci ; 27(8): 3777-3783, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2316118

ABSTRACT

OBJECTIVE: Respiratory viral diseases are common in children. A viral diagnostic test is necessary, because COVID-19 shows signs and symptoms similar to those of common respiratory viruses. The article aims at analyzing the presence of respiratory viruses that were common before the pandemic in children who were tested for suspected COVID-19, and is also concerned with how common respiratory viruses were impacted by COVID-19 measures during the second year of pandemic. PATIENTS AND METHODS: Nasopharyngeal swabs were examined to detect the presence of respiratory viruses. The respiratory panel kit included SARS-CoV-2, influenza A and B, rhinovirus/enterovirus, parainfluenza 1, 2, 3 and 4, coronaviruses NL 63, 229E, OC43, and HKU1, human metapneumovirus A/B, human bocavirus, respiratory syncytial virus (RSV) A/B, human parechovirus, and adenovirus. Virus scans were compared during and after the restricted period. RESULTS: No virus was isolated from the 86 patients. SARS-CoV-2 was the most frequently observed virus, as expected, and rhinovirus was the second, and coronavirus OC43 was the third. Influenza viruses and RSV were not detected in the scans. CONCLUSIONS: Influenza and RSV viruses disappeared during the pandemic period and rhinovirus was the second most common virus after the CoVs during and after the restriction period. Non-pharmaceutical interventions should be established as a precaution to prevent infectious diseases even after the pandemic.


Subject(s)
COVID-19 , Enterovirus Infections , Influenza, Human , Metapneumovirus , Orthomyxoviridae , Respiratory Tract Infections , Vaccines , Viruses , Humans , Child , Respiratory Syncytial Viruses , Influenza, Human/epidemiology , Pandemics , Respiratory Tract Infections/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Rhinovirus
2.
PeerJ ; 11: e15008, 2023.
Article in English | MEDLINE | ID: covidwho-2303066

ABSTRACT

Background: The epidemiology of respiratory tract infections (RTI) has dramatically changed over the course of the COVID-19 pandemic. A major effort in the clinical management of RTI has been directed toward diagnosing COVID-19, while the causes of other, common community RTI often remain enigmatic. To shed light on the etiological causes of RTI during a low COVID-19 transmission period in 2021, we did a pilot study using molecular testing for virologic causes of upper RTI among adults with respiratory symptoms from Almaty, Kazakhstan. Methods: Adults presenting at two public hospitals with respiratory symptoms were screened using SARS-CoV-2 PCR on nasopharyngeal swabs. A subset of RTI+, COVID-19-negative adults (n = 50) was then tested for the presence of common RTI viruses and influenza A virus (IAV). Next generation virome sequencing was used to further characterize the PCR-detected RTI pathogens. Results: Of 1,812 symptomatic adults, 21 (1.2%) tested SARS-CoV-2-positive. Within the COVID-19 negative outpatient subset, 33/50 subjects (66%) had a positive PCR result for a common community RTI virus, consisting of human parainfluenza virus 3-4 (hPIV 3-4) in 25/50 (50%), rhinovirus (hRV) in 2 (4%), hPIV4-hRV co-infection in four (8%) and adenovirus or the OCR43/HKU-1 coronavirus in two (4%) cases; no IAV was detected. Virome sequencing allowed to reconstruct sequences of most PCR-identified rhinoviruses and hPIV-3/human respirovirus-3. Conclusions: COVID-19 was cause to a low proportion of symptomatic RTI among adults. Among COVID-negative participants, symptomatic RTI was predominantly associated with hPIV and hRV. Therefore, respiratory viruses other than SARS-CoV-2 should be considered in the clinical management and prevention of adult RTI in the post-pandemic era.


Subject(s)
COVID-19 , Influenza A virus , Respiratory Tract Infections , Adult , Humans , COVID-19/epidemiology , Pandemics , Pilot Projects , SARS-CoV-2/genetics , Respiratory Tract Infections/diagnosis , Parainfluenza Virus 1, Human , Rhinovirus/genetics , Parainfluenza Virus 2, Human , Multiplex Polymerase Chain Reaction
3.
Nat Commun ; 14(1): 2329, 2023 04 22.
Article in English | MEDLINE | ID: covidwho-2302201

ABSTRACT

Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.


Subject(s)
Antiviral Restriction Factors , Asthma , COVID-19 , DEAD Box Protein 58 , Inflammasomes , Rhinovirus , Humans , Antiviral Restriction Factors/genetics , Antiviral Restriction Factors/metabolism , Asthma/genetics , Asthma/immunology , COVID-19/genetics , COVID-19/immunology , DEAD Box Protein 58/metabolism , Enterovirus Infections/genetics , Enterovirus Infections/immunology , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation , Interferon Type I , Picornaviridae Infections/genetics , Picornaviridae Infections/immunology , Rhinovirus/metabolism , Rhinovirus/pathogenicity , SARS-CoV-2
4.
Viruses ; 15(4)2023 03 24.
Article in English | MEDLINE | ID: covidwho-2299035

ABSTRACT

A decade-long neglect of rhinovirus as an important agent of disease in humans was primarily due to the fact that they were seen as less virulent and capable of causing only mild respiratory infections such as common cold. However, with an advent of molecular diagnostic methods, an increasing number of reports placed them among the pathogens found in the lower respiratory tract and recognized them as important risk factors for asthma-related pathology in childhood. As the spread of rhinovirus was not severely affected by the implementation of social distancing and other measures during the coronavirus disease 2019 (COVID-19) pandemic, its putative pathogenic role has become even more evident in recent years. By concentrating on children as the most vulnerable group, in this narrative review we first present classification and main traits of rhinovirus, followed by epidemiology and clinical presentation, risk factors for severe forms of the disease, long-term complications and the pathogenesis of asthma, as well as a snapshot of treatment trials and studies. Recent evidence suggests that the rhinovirus is a significant contributor to respiratory illness in both high-risk and low-risk populations of children.


Subject(s)
Asthma , COVID-19 , Common Cold , Enterovirus Infections , Picornaviridae Infections , Respiratory Tract Infections , Child , Humans , Infant , Rhinovirus , COVID-19/epidemiology , COVID-19/complications , Common Cold/epidemiology , Asthma/epidemiology , Asthma/etiology , Enterovirus Infections/complications , Risk Factors , Picornaviridae Infections/diagnosis
5.
Influenza Other Respir Viruses ; 17(3): e13106, 2023 03.
Article in English | MEDLINE | ID: covidwho-2259186

ABSTRACT

Background: The annual reappearance of respiratory viruses has been recognized for decades. COVID-19 mitigation measures taken during the pandemic were targeted at respiratory transmission and broadly impacted the burden of acute respiratory illnesses (ARIs). Methods: We used the longitudinal Household Influenza Vaccine Evaluation (HIVE) cohort in southeast Michigan to characterize the circulation of respiratory viruses from March 1, 2020, to June 30, 2021, using RT-PCR of respiratory specimens collected at illness onset. Participants were surveyed twice during the study period, and SARS-CoV-2 antibodies were measured in serum by electrochemiluminescence immunoassay. Incidence rates of ARI reports and virus detections were compared between the study period and a preceding pre-pandemic period of similar duration. Results: Overall, 437 participants reported a total of 772 ARIs; 42.6% had respiratory viruses detected. Rhinoviruses were the most frequent virus, but seasonal coronaviruses, excluding SARS-CoV-2, were also common. Illness reports and percent positivity were lowest from May to August 2020, when mitigation measures were most stringent. Seropositivity for SARS-CoV-2 was 5.3% in summer 2020 and increased to 11.3% in spring 2021. The incidence rate of total reported ARIs for the study period was 50% lower (95% CI: 0.5, 0.6; p < 0.001) than the incidence rate from a pre-pandemic comparison period (March 1, 2016, to June 30, 2017). Conclusions: The burden of ARI in the HIVE cohort during the COVID-19 pandemic fluctuated, with declines occurring concurrently with the widespread use of public health measures. Rhinovirus and seasonal coronaviruses continued to circulate even when influenza and SARS-CoV-2 circulation was low.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Pandemics , SARS-CoV-2 , Rhinovirus
6.
J Med Virol ; 95(4): e28692, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2270425

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic and related public health intervention measures have been reported to have resulted in the reduction of infections caused by influenza viruses and other common respiratory viruses. However, the influence may be varied in areas that have different ecological, economic, and social conditions. This study investigated the changing epidemiology of 8 common respiratory pathogens, including Influenza A (IFVA), Influenza B (IFVB), Respiratory syncytial virus (HRSV), rhinovirus (RV), Human metapneumovirus Adenovirus, Human bocavirus, and Mycoplasma pneumoniae, among hospitalized children during spring and early summer in 2019-2021 in two hospitals in Hainan Island, China, in the COVID-19 pandemic era. The results revealed a significant reduction in the prevalence of IFVA and IFVB in 2020 and 2021 than in 2019, whereas the prevalence of HRSV increased, and it became the dominant viral pathogen in 2021. RV was one of the leading pathogens in the 3 year period, where no significant difference was observed. Phylogenetic analysis revealed close relationships among the circulating respiratory viruses. Large scale studies are needed to study the changing epidemiology of seasonal respiratory viruses to inform responses to future respiratory virus pandemics.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Infant , Respiratory Tract Infections/epidemiology , Child, Hospitalized , Seasons , Pandemics , Phylogeny , COVID-19/epidemiology , Viruses/genetics , Metapneumovirus/genetics , Respiratory Syncytial Virus, Human/genetics , China/epidemiology , Rhinovirus/genetics
7.
Int J Infect Dis ; 130: 205-207, 2023 May.
Article in English | MEDLINE | ID: covidwho-2256376

ABSTRACT

We present the case of an 81-year-old man, who was immunocompetent, who was admitted to the hospital with symptoms of fever and dyspnea suspected to be caused by COVID-19. Further examination revealed a triple coinfection, as determined by multiplex polymerase chain reaction testing, caused by the respiratory syncytial virus, human coronavirus OC43, and rhinovirus. Upon auscultation, diffuse wheezing without crackles was detected. After ruling out the possibility of acute heart failure with pulmonary edema, the patient was treated with nebulization of terbutaline for a period of 72 hours. This case serves to demonstrate the potential dangers of lifting barrier measures, such as mandatory face masks in high-risk areas, during the fall-winter season. In addition, it highlights the challenges that may arise in the post-COVID-19 era because reliance on flu vaccinations alone may not be sufficient.


Subject(s)
COVID-19 , Coinfection , Coronavirus OC43, Human , Enterovirus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Male , Humans , Aged, 80 and over , Rhinovirus , Coinfection/diagnosis
9.
EBioMedicine ; 90: 104493, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2256077

ABSTRACT

BACKGROUND: In young children, rates of lower respiratory infections (LRI) and invasive pneumococcal disease (IPD) have been associated with respiratory syncytial virus (RSV), human metapneumovirus (hMPV), influenza (flu), and parainfluenza (PIV) (collectively termed here as pneumonia and pneumococcal disease-associated viruses [PDA-viruses]). However, their contribution to the pathogenesis of these disease endpoints has not yet been elucidated. The COVID-19 pandemic provided a unique opportunity to examine the question. METHODS: This prospective study comprised all children <5 years, living in southern Israel, during 2016 through 2021. The data were previously collected in multiple ongoing prospective surveillance programs and include: hospital visits for community-acquired alveolar pneumonia (CAAP), non-CAAP LRI; nasopharyngeal pneumococcal carriage (<3 years of age); respiratory virus activity; and nationwide, all-ages COVID-19 episodes and IPD in children <5 years. A hierarchical statistical model was developed to estimate the proportion of the different clinical endpoints attributable to each virus from monthly time series data, stratified by age and ethnicity. A separate model was fit for each endpoint, with covariates that included a linear time trend, 12-month harmonic variables to capture unexplained seasonal variations, and the proportion of tests positive for each virus in that month. FINDINGS: During 2016 through 2021, 3,204, 26,695, 257, and 619 episodes of CAAP, non-CAAP LRI, pneumococcal bacteremic pneumonia and non-pneumonia IPD, respectively, were reported. Compared to 2016-2019, broad declines in the disease endpoints were observed shortly after the pandemic surge, coincident with a complete disappearance of all PDA-viruses and continued circulation of rhinovirus (RhV) and adenovirus (AdV). From April 2021, off-season and abrupt surges of all disease endpoints occurred, associated with similar dynamics among the PDA-viruses, which re-emerged sequentially. Using our model fit to the entire 2016-2021 period, 82% (95% CI, 75-88%) of CAAP episodes in 2021 were attributable to the common respiratory viruses, as were 22%-31% of the other disease endpoints. Virus-specific contributions to CAAP were: RSV, 49% (95% CI, 43-55%); hMPV, 13% (10-17%); PIV, 11% (7-15%); flu, 7% (1-13%). RhV and AdV did not contribute. RSV was the main contributor in all endpoints, especially in infants. Pneumococcal carriage prevalence remained largely stable throughout the study. INTERPRETATION: RSV and hMPV play a critical role in the burden of CAAP and pneumococcal disease in children. Interventions targeting these viruses could have a secondary effect on the burden of disease typically attributed to bacteria. FUNDING: There was no funding for this study.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Pneumococcal Infections , Pneumonia, Pneumococcal , Pneumonia, Viral , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Humans , Child , Child, Preschool , Streptococcus pneumoniae , Prospective Studies , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Pneumonia, Pneumococcal/epidemiology , Pneumococcal Infections/epidemiology , Adenoviridae , Rhinovirus
10.
Lancet Microbe ; 4(5): e340-e348, 2023 05.
Article in English | MEDLINE | ID: covidwho-2252469

ABSTRACT

BACKGROUND: Respiratory disease is a major cause of morbidity and mortality; however, surveillance for circulating respiratory viruses is passive and biased. Wastewater-based epidemiology has been used to understand SARS-CoV-2, influenza A, and respiratory syncytial virus (RSV) infection rates at a community level but has not been used to investigate other respiratory viruses. We aimed to use wastewater-based epidemiology to understand community viral respiratory infection occurrence. METHODS: A retrospective wastewater-based epidemiology surveillance study was carried out at a large wastewater treatment plant located in California, USA. Using droplet digital RT-PCR, we measured RNA concentrations of influenza A and influenza B viruses, RSV A and RSV B, parainfluenza (1-4) viruses, rhinovirus, seasonal coronaviruses, and metapneumovirus in wastewater solids three times per week for 17 months (216 samples) between Feb 1, 2021, and June 21, 2022. Novel probe-based RT-PCR assays for non-influenza viral targets were developed and validated. We compared viral RNA concentrations to positivity rates for viral infections from clinical specimens submitted to California Sentinel Clinical Laboratories (sentinel laboratories) to assess concordance between the two datasets. FINDINGS: We detected RNA from all tested viruses in wastewater solids. Human rhinovirus (median concentration 4300 [0-9500] copies per gram dry weight) and seasonal human coronaviruses (35 000 [17 000-56 000]) were found at the highest concentrations. Concentrations of viral RNA correlated significantly and positively with positivity rates of associated viral diseases from sentinel laboratories (tau 0·32-0·57, p<0·0009); the only exceptions were influenza B and RSV A, which were rarely detected in wastewater solids. Measurements from wastewater indicated coronavirus OC43 dominated the seasonal human coronavirus infections whereas parainfluenza 3 dominated among parainfluenza infections during the study period. Concentrations of all tested viral RNA decreased noticeably after the omicron BA.1 surge suggesting a connection between changes in human behaviour during the surge and transmission of all respiratory viruses. INTERPRETATION: Wastewater-based epidemiology can be used to obtain information on circulation of respiratory viruses at a localised, community level without the need to test many individuals because a single sample of wastewater represents the entire contributing community. Results from wastewater can be available within 24 h of sample collection, generating real time information to inform public health responses, clinical decision making, and individual behaviour modifications. FUNDING: CDC Foundation.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Nucleic Acids , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Humans , Influenza, Human/epidemiology , Metapneumovirus/genetics , Rhinovirus/genetics , Wastewater , Seasons , Pandemics , Retrospective Studies , Respiratory Tract Infections/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Respiratory Syncytial Virus, Human/genetics , Paramyxoviridae Infections/epidemiology , Virus Diseases/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Influenza B virus/genetics , RNA, Viral/genetics , RNA, Viral/analysis
12.
Int J Environ Res Public Health ; 20(1)2022 12 30.
Article in English | MEDLINE | ID: covidwho-2245830

ABSTRACT

(1) Background: Respiratory co-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viruses are common, but data on clinical outcomes and laboratory biomarkers indicative of disease severity are limited. We aimed to compare clinical outcomes and laboratory biomarkers of patients with SARS-CoV-2 alone to those of patients with SARS-CoV-2 and either rhinovirus or adenovirus. (2) Methods: Hospitalized patients co-infected with SARS-CoV-2 and rhinovirus and patients co-infected with SARS-CoV-2 and adenovirus were matched to patients infected with SARS-CoV-2 alone. Outcomes of interest were the cumulative incidences of mechanical ventilation use, intensive care unit (ICU) admission, 30-day all-cause mortality, and 30-day all-cause readmission from the day of discharge. We also assessed differences in laboratory biomarkers from the day of specimen collection. (3) Results: Patients co-infected with SARS-CoV-2 and rhinovirus, compared with patients infected with SARS-CoV-2, had significantly greater 30-day all-cause mortality (8/23 (34.8%) vs. 8/69 (11.6%), p = 0.02). Additionally, median alanine transaminase (13 IU/L vs. 24 IU/L, p = 0.03), aspartate transaminase (25 IU/L vs. 36 IU/L, p = 0.04), and C-reactive protein (34.86 mg/L vs. 94.68 mg/L, p = 0.02) on day of specimen collection were significantly lower in patients co-infected with SARS-CoV-2 and rhinovirus in comparison to patients infected with SARS-CoV-2 alone. Clinical outcomes and laboratory markers did not differ significantly between patients with SARS-CoV-2 and adenovirus co-infection and patients with SARS-CoV-2 mono-infection. (4) Conclusion: SARS-CoV-2 and rhinovirus co-infection, compared with SARS-CoV-2 mono-infection alone, is positively associated with 30-day all-cause mortality among hospitalized patients. However, our lack of significant findings in our analysis of patients with SARS-CoV-2 and adenovirus co-infection may suggest that SARS-CoV-2 co-infections have variable significance, and further study is warranted.


Subject(s)
Adenoviridae Infections , COVID-19 , Coinfection , Humans , Adult , SARS-CoV-2 , Rhinovirus , Coinfection/epidemiology , Cohort Studies , Retrospective Studies , Adenoviridae
13.
Trends Mol Med ; 28(12): 1112-1127, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2243255

ABSTRACT

Asthma exacerbations significantly impact millions of patients worldwide to pose large disease burdens on affected patients, families, and health-care systems. Although numerous environmental factors cause asthma exacerbations, viral respiratory infections are the principal triggers. Advances in the pathophysiology of asthma have elucidated dysregulated protective immune responses and upregulated inflammation that create susceptibility and risks for exacerbation. Biologics for the treatment of severe asthma reduce rates of exacerbations and identify specific pathways of inflammation that contribute to altered pathophysiology, novel therapeutic targets, and informative biomarkers. Major steps to prevent exacerbations include the identification of molecular pathways whose blockage will prevent asthma attacks safely, predictably, and effectively.


Subject(s)
Asthma , Picornaviridae Infections , Virus Diseases , Humans , Rhinovirus/physiology , Asthma/therapy , Asthma/drug therapy , Inflammation , Virus Diseases/complications
14.
BMC Infect Dis ; 23(1): 75, 2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2227210

ABSTRACT

BACKGROUND: Previous studies have shown that non-critically ill COVID-19 patients co-infected with other respiratory viruses have poor clinical outcomes. However, limited studies focused on this co-infections in critically ill patients. This study aims to evaluate the clinical outcomes of critically ill patients infected with COVID-19 and co-infected by other respiratory viruses. METHODS: A multicenter retrospective cohort study was conducted for all adult patients with COVID-19 who were hospitalized in the ICUs between March, 2020 and July, 2021. Eligible patients were sub-categorized into two groups based on simultaneous co-infection with other respiratory viruses throughout their ICU stay. Influenza A or B, Human Adenovirus (AdV), Human Coronavirus (i.e., 229E, HKU1, NL63, or OC43), Human Metapneumovirus, Human Rhinovirus/Enterovirus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Parainfluenza virus, and Respiratory Syncytial Virus (RSV) were among the respiratory viral infections screened. Patients were followed until discharge from the hospital or in-hospital death. RESULTS: A total of 836 patients were included in the final analysis. Eleven patients (1.3%) were infected concomitantly with other respiratory viruses. Rhinovirus/Enterovirus (38.5%) was the most commonly reported co-infection. No difference was observed between the two groups regarding the 30-day mortality (HR 0.39, 95% CI 0.13, 1.20; p = 0.10). The in-hospital mortality was significantly lower among co-infected patients with other respiratory viruses compared with patients who were infected with COVID-19 alone (HR 0.32 95% CI 0.10, 0.97; p = 0.04). Patients concomitantly infected with other respiratory viruses had longer median mechanical ventilation (MV) duration and hospital length of stay (LOS). CONCLUSION: Critically ill patients with COVID-19 who were concomitantly infected with other respiratory viruses had comparable 30-day mortality to those not concomitantly infected. Further proactive testing and care may be required in the case of co-infection with respiratory viruses and COVID-19. The results of our study need to be confirmed by larger studies.


Subject(s)
COVID-19 , Coinfection , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Adult , Humans , Cohort Studies , Respiratory Tract Infections/epidemiology , Retrospective Studies , Coinfection/epidemiology , Hospital Mortality , Rhinovirus
15.
JAMA Netw Open ; 6(2): e2254909, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2234746

ABSTRACT

Importance: Rhinoviruses and/or enteroviruses, which continued to circulate during the COVID-19 pandemic, are commonly detected in pediatric patients with acute respiratory illness (ARI). Yet detailed characterization of rhinovirus and/or enterovirus detection over time is limited, especially by age group and health care setting. Objective: To quantify and characterize rhinovirus and/or enterovirus detection before and during the COVID-19 pandemic among children and adolescents seeking medical care for ARI at emergency departments (EDs) or hospitals. Design, Setting, and Participants: This cross-sectional study used data from the New Vaccine Surveillance Network (NVSN), a multicenter, active, prospective surveillance platform, for pediatric patients who sought medical care for fever and/or respiratory symptoms at 7 EDs or hospitals within NVSN across the US between December 2016 and February 2021. Persons younger than 18 years were enrolled in NVSN, and respiratory specimens were collected and tested for multiple viruses. Main Outcomes and Measures: Proportion of patients in whom rhinovirus and/or enterovirus, or another virus, was detected by calendar month and by prepandemic (December 1, 2016, to March 11, 2020) or pandemic (March 12, 2020, to February 28, 2021) periods. Month-specific adjusted odds ratios (aORs) for rhinovirus and/or enterovirus-positive test results (among all tested) by setting (ED or inpatient) and age group (<2, 2-4, or 5-17 years) were calculated, comparing each month during the pandemic to equivalent months of previous years. Results: Of the 38 198 children and adolescents who were enrolled and tested, 11 303 (29.6%; mean [SD] age, 2.8 [3.7] years; 6733 boys [59.6%]) had rhinovirus and/or enterovirus-positive test results. In prepandemic and pandemic periods, rhinoviruses and/or enteroviruses were detected in 29.4% (9795 of 33 317) and 30.9% (1508 of 4881) of all patients who were enrolled and tested and in 42.2% (9795 of 23 236) and 73.0% (1508 of 2066) of those with test positivity for any virus, respectively. Rhinoviruses and/or enteroviruses were the most frequently detected viruses in both periods and all age groups in the ED and inpatient setting. From April to September 2020 (pandemic period), rhinoviruses and/or enteroviruses were detectable at similar or lower odds than in prepandemic years, with aORs ranging from 0.08 (95% CI, 0.04-0.19) to 0.76 (95% CI, 0.55-1.05) in the ED and 0.04 (95% CI, 0.01-0.11) to 0.71 (95% CI, 0.47-1.07) in the inpatient setting. However, unlike some other viruses, rhinoviruses and/or enteroviruses soon returned to prepandemic levels and from October 2020 to February 2021 were detected at similar or higher odds than in prepandemic months in both settings, with aORs ranging from 1.47 (95% CI, 1.12-1.93) to 3.01 (95% CI, 2.30-3.94) in the ED and 1.36 (95% CI, 1.03-1.79) to 2.44 (95% CI, 1.78-3.34) in the inpatient setting, and in all age groups. Compared with prepandemic years, during the pandemic, rhinoviruses and/or enteroviruses were detected in patients who were slightly older, although most (74.5% [1124 of 1508]) were younger than 5 years. Conclusions and Relevance: Results of this study show that rhinoviruses and/or enteroviruses persisted and were the most common respiratory virus group detected across all pediatric age groups and in both ED and inpatient settings. Rhinoviruses and/or enteroviruses remain a leading factor in ARI health care burden, and active ARI surveillance in children and adolescents remains critical for defining the health care burden of respiratory viruses.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Male , Adolescent , Child , Humans , Child, Preschool , Rhinovirus , Pandemics , Prospective Studies , Cross-Sectional Studies , COVID-19/epidemiology , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology
16.
JAMA Netw Open ; 5(12): e2245861, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2157641

ABSTRACT

Importance: Few US studies have reexamined risk factors for SARS-CoV-2 positivity in the context of widespread vaccination and new variants or considered risk factors for cocirculating endemic viruses, such as rhinovirus. Objectives: To evaluate how risk factors and symptoms associated with SARS-CoV-2 test positivity changed over the course of the pandemic and to compare these with the risk factors associated with rhinovirus test positivity. Design, Setting, and Participants: This case-control study used a test-negative design with multivariable logistic regression to assess associations between SARS-CoV-2 and rhinovirus test positivity and self-reported demographic and symptom variables over a 25-month period. The study was conducted among symptomatic individuals of all ages enrolled in a cross-sectional community surveillance study in King County, Washington, from June 2020 to July 2022. Exposures: Self-reported data for 15 demographic and health behavior variables and 16 symptoms. Main Outcomes and Measures: Reverse transcription-polymerase chain reaction-confirmed SARS-CoV-2 or rhinovirus infection. Results: Analyses included data from 23 498 individuals. The median (IQR) age of participants was 34.33 (22.42-45.08) years, 13 878 (59.06%) were female, 4018 (17.10%) identified as Asian, 654 (2.78%) identified as Black, and 2193 (9.33%) identified as Hispanic. Close contact with an individual with SARS-CoV-2 (adjusted odds ratio [aOR], 3.89; 95% CI, 3.34-4.57) and loss of smell or taste (aOR, 3.49; 95% CI, 2.77-4.41) were the variables most associated with SARS-CoV-2 test positivity, but both attenuated during the Omicron period. Contact with a vaccinated individual with SARS-CoV-2 (aOR, 2.03; 95% CI, 1.56-2.79) was associated with lower odds of testing positive than contact with an unvaccinated individual with SARS-CoV-2 (aOR, 4.04; 95% CI, 2.39-7.23). Sore throat was associated with Omicron infection (aOR, 2.27; 95% CI, 1.68-3.20) but not Delta infection. Vaccine effectiveness for participants fully vaccinated with a booster dose was 93% (95% CI, 73%-100%) for Delta, but not significant for Omicron. Variables associated with rhinovirus test positivity included being younger than 12 years (aOR, 3.92; 95% CI, 3.42-4.51) and experiencing a runny or stuffy nose (aOR, 4.58; 95% CI, 4.07-5.21). Black race, residing in south King County, and households with 5 or more people were significantly associated with both SARS-CoV-2 and rhinovirus test positivity. Conclusions and Relevance: In this case-control study of 23 498 symptomatic individuals, estimated risk factors and symptoms associated with SARS-CoV-2 infection changed over time. There was a shift in reported symptoms between the Delta and Omicron variants as well as reductions in the protection provided by vaccines. Racial and sociodemographic disparities persisted in the third year of SARS-CoV-2 circulation and were also present in rhinovirus infection. Trends in testing behavior and availability may influence these results.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Humans , Adult , Middle Aged , Male , Rhinovirus , Case-Control Studies , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Risk Factors
17.
BMC Public Health ; 22(1): 1167, 2022 06 11.
Article in English | MEDLINE | ID: covidwho-1885294

ABSTRACT

BACKGROUND: Lower respiratory tract infections are among the main causes of death. Although there are many respiratory viruses, diagnostic efforts are focused mainly on influenza. The Respiratory Viruses Network (RespVir) collects infection data, primarily from German university hospitals, for a high diversity of infections by respiratory pathogens. In this study, we computationally analysed a subset of the RespVir database, covering 217,150 samples tested for 17 different viral pathogens in the time span from 2010 to 2019. METHODS: We calculated the prevalence of 17 respiratory viruses, analysed their seasonality patterns using information-theoretic measures and agglomerative clustering, and analysed their propensity for dual infection using a new metric dubbed average coinfection exclusion score (ACES). RESULTS: After initial data pre-processing, we retained 206,814 samples, corresponding to 1,408,657 performed tests. We found that Influenza viruses were reported for almost the half of all infections and that they exhibited the highest degree of seasonality. Coinfections of viruses are frequent; the most prevalent coinfection was rhinovirus/bocavirus and most of the virus pairs had a positive ACES indicating a tendency to exclude each other regarding infection. CONCLUSIONS: The analysis of respiratory viruses dynamics in monoinfection and coinfection contributes to the prevention, diagnostic, treatment, and development of new therapeutics. Data obtained from multiplex testing is fundamental for this analysis and should be prioritized over single pathogen testing.


Subject(s)
Coinfection , Respiratory Tract Infections , Virus Diseases , Viruses , Coinfection/epidemiology , Humans , Infant , Rhinovirus , Virus Diseases/epidemiology
18.
J Med Virol ; 94(8): 3829-3839, 2022 08.
Article in English | MEDLINE | ID: covidwho-2127821

ABSTRACT

Respiratory infections are often caused by enteroviruses (EVs). The aim of this study was to identify whether certain types of EV were more likely to cause severe illness in 2016, when an increasing spread of upper respiratory infections was observed in Gothenburg, Sweden. The EV strain in 137 of 1341 nasopharyngeal samples reactive for EV by polymerase chain reaction could be typed by sequencing the viral 5'-untranslated region and VP1 regions. Phylogenetic trees were constructed. Patient records were reviewed. Hospital care was needed for 46 of 74 patients with available medical records. The majority of the patients (83) were infected with the rhinovirus (RV). The remaining 54 were infected with EV A, B, C, and D strains of 13 different types, with EV-D68 and CV-A10 being the most common (17 vs. 14). Significantly more patients with EV-D68 presented with dyspnea, both when compared with other EV types (p = 0.003) and compared to all other EV and RV infections (p = 0.04). Phylogenetic analysis of the sequences revealed the spread of both Asian and European CV-A10 strains and 12 different RV C types. This study showed an abundance of different EV types spreading during a year with increased upper respiratory increased infections. EV-D68 infections were associated with more severe disease manifestation. Other EV and RV types were more evenly distributed between hospitalized and nonhospitalized patients. The EV type CV-A10 was also found in infected patients, which warrants further studies and surveillance, as this pathogen could cause more severe disease and outbreaks of hand, foot, and mouth disease.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Enterovirus , Respiratory Tract Infections , Disease Outbreaks , Enterovirus/genetics , Humans , Infant , Phylogeny , Rhinovirus/genetics
19.
Mikrobiyol Bul ; 56(4): 667-681, 2022 Oct.
Article in Turkish | MEDLINE | ID: covidwho-2121015

ABSTRACT

During the ongoing Coronavirus disease-2019 (COVID-19) pandemic, infections caused by other respiratory viruses continue to be seen and constitute an important health problem. In this study, it was aimed to evaluate the frequencies of respiratory tract viruses detected by respiratory tract virus panel (Allplex Respiratory Panel, Seegene, South Korea) multiplex real-time PCR test in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pre-pandemic period, and in the first and second year of the pandemic. The distribution of viral agents between these three periods was also investigated. In addition, it was planned to investigate the frequency of coinfection with SARS-CoV-2 and other respiratory tract viruses during the pandemic. When the sum of the three periods were evaluated together, it was observed that at least one respiratory tract virus was detected in 13 802 (32.7%) of 42 174 samples. While at least one respiratory tract virus was detected in 8740 (54.6%) of 16 002 samples in the pre-pandemic period, at least one respiratory tract virus was detected in 1638 (9.4%) of 17 510 samples in the first year of the pandemic, and in 3424 (39.5%) of 8662 samples in the second year of the pandemic. In the first year of the pandemic, a statistically significant difference was observed that the number of viruses detected decreased due to closure measures and the use of personal protective equipment (p<0.001). It was determined that the frequency of the detection of respiratory tract viruses other than SARS-CoV-2 started to increase again and a statistically significant difference occurred in the third period when vaccination started and the transition to normalization began by gradually loosening the closure measures (p<0.001). Rhinovirus was the most frequently detected virus in all three periods of the study (First period: 16.5%; second period: 5.9%; third period: 16.5). More than one respiratory tract virus was detected simultaneously in 2061 (14.9%) of 13 802 samples, in which at least one respiratory tract virus was detected within the scope of the study. Rhinovirus (7.3%) took the first place among the viruses found in coinfection. In the second and third periods covering the pandemic period, it was observed that the SARS-CoV-2 PCR result was also positive in 177 (4.2%) of 4219 samples whose respiratory tract virus panel PCR results were positive and simultaneously had a SARS-CoV-2 PCR test request. Therefore, it was concluded that SARS-CoV-2 coinfection can be observed in the same patient with other respiratory tract viruses in respiratory tract samples. The addition of SARS-CoV-2 to the respiratory tract virus multiplex PCR panels currently in use will enable faster detection of such coinfections. It is thought that both the incidence of respiratory tract virus infections other than SARS-CoV-2 and the rate of coinfection with other respiratory tract viruses in SARS-CoV-2 infection may increase with the relaxation of the measures taken for the control of the pandemic. For this reason, the detection of viruses that cause respiratory tract infections from clinical samples with reliable and rapid methods will ensure the measures to be taken to protect public health without delay and thus contribute to the prevention of the spread of infections.


Subject(s)
COVID-19 , Coinfection , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , SARS-CoV-2 , Coinfection/epidemiology , Rhinovirus , Multiplex Polymerase Chain Reaction
20.
Viruses ; 14(11)2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2090353

ABSTRACT

Since their discovery in the 1950s, rhinoviruses (RVs) have been recognized as a major causative agent of the "common cold" and cold-like illnesses, accounting for more than 50% of upper respiratory tract infections. However, more than that, respiratory viral infections are responsible for approximately 50% of asthma exacerbations in adults and 80% in children. In addition to causing exacerbations of asthma, COPD and other chronic lung diseases, RVs have also been implicated in the pathogenesis of lower respiratory tract infections including bronchiolitis and community acquired pneumonia. Finally, early life respiratory viral infections with RV have been associated with asthma development in children. Due to the vast genetic diversity of RVs (approximately 160 known serotypes), recurrent infection is common. RV infections are generally acquired in the community with transmission occurring via inhalation of aerosols, respiratory droplets or fomites. Following the outbreak of coronavirus disease 2019 (COVID-19), exposure to RV and other respiratory viruses was significantly reduced due to social-distancing, restrictions on social gatherings, and increased hygiene protocols. In the present review, we summarize the impact of COVID-19 preventative measures on the incidence of RV infection and its sequelae.


Subject(s)
Asthma , COVID-19 , Communicable Diseases , Picornaviridae Infections , Respiratory Tract Infections , Child , Adult , Humans , Rhinovirus/genetics , COVID-19/prevention & control , Physical Distancing , Asthma/complications , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/complications , Picornaviridae Infections/epidemiology , Picornaviridae Infections/prevention & control , Picornaviridae Infections/complications
SELECTION OF CITATIONS
SEARCH DETAIL