Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Virol J ; 18(1): 174, 2021 08 23.
Article in English | MEDLINE | ID: covidwho-1770553

ABSTRACT

BACKGROUND: Human rhinovirus (HRV) is one of the major viruses of acute respiratory tract disease among infants and young children. This work aimed to understand the epidemiological and phylogenetic features of HRV in Guangzhou, China. In addition, the clinical characteristics of hospitalized children infected with different subtype of HRV was investigated. METHODS: Hospitalized children aged < 14 years old with acute respiratory tract infections were enrolled from August 2018 to December 2019. HRV was screened for by a real-time reverse-transcription PCR targeting the viral 5'UTR. RESULTS: HRV was detected in 6.41% of the 655 specimens. HRV infection was frequently observed in children under 2 years old (57.13%). HRV-A and HRV-C were detected in 18 (45%) and 22 (55%) specimens. All 40 HRV strains detected were classified into 29 genotypes. The molecular evolutionary rate of HRV-C was estimated to be 3.34 × 10-3 substitutions/site/year and was faster than HRV-A (7.79 × 10-4 substitutions/site/year). Children who experienced rhinorrhoea were more common in the HRV-C infection patients than HRV-A. The viral load was higher in HRV-C detection group than HRV-A detection group (p = 0.0148). The median peak symptom score was higher in patients with HRV-C infection as compared to HRV-A (p = 0.0543), even though the difference did not significance. CONCLUSION: This study revealed the molecular epidemiological characteristics of HRV in patients with respiratory infections in southern China. Children infected with HRV-C caused more severe disease characteristics than HRV-A, which might be connected with higher viral load in patients infected with HRV-C. These findings will provide valuable information for the pathogenic mechanism and treatment of HRV infection.


Subject(s)
Picornaviridae Infections , Respiratory Tract Infections , Rhinovirus , Adolescent , Child , Child, Preschool , China/epidemiology , Enterovirus , Genetic Variation , Humans , Infant , Phylogeny , Picornaviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rhinovirus/genetics
2.
J Virol ; 96(2): e0106021, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1759286

ABSTRACT

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Subject(s)
Capsid/chemistry , Mutation/drug effects , Rhinovirus/physiology , Virus Uncoating/physiology , Antiviral Agents/pharmacology , Capsid/drug effects , Capsid Proteins/genetics , Capsid Proteins/metabolism , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Endosomes/chemistry , Endosomes/drug effects , Endosomes/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intercellular Adhesion Molecule-1/metabolism , Protein Conformation , Rhinovirus/chemistry , Rhinovirus/drug effects , Rhinovirus/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Virus Internalization/drug effects , Virus Uncoating/drug effects , Virus Uncoating/genetics
3.
Nat Commun ; 13(1): 1406, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1750000

ABSTRACT

Human rhinovirus (HRV), like coronavirus (HCoV), are positive-strand RNA viruses that cause both upper and lower respiratory tract illness, with their replication facilitated by concentrating RNA-synthesizing machinery in intracellular compartments made of modified host membranes, referred to as replication organelles (ROs). Here we report a non-canonical, essential function for stimulator of interferon genes (STING) during HRV infections. While the canonical function of STING is to detect cytosolic DNA and activate inflammatory responses, HRV infection triggers the release of STIM1-bound STING in the ER by lowering Ca2+, thereby allowing STING to interact with phosphatidylinositol 4-phosphate (PI4P) and traffic to ROs to facilitates viral replication and transmission via autophagy. Our results thus hint a critical function of STING in HRV viral replication and transmission, with possible implications for other RO-mediated RNA viruses.


Subject(s)
Enterovirus , RNA Viruses , Humans , Organelles , Rhinovirus , Virus Replication/physiology
4.
Viruses ; 14(3)2022 02 27.
Article in English | MEDLINE | ID: covidwho-1744919

ABSTRACT

Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.


Subject(s)
Asthma , Bronchitis , Enterovirus Infections , Enterovirus , Picornaviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , Asthma/epidemiology , Biomarkers , Child , Humans , Infant , Respiratory Tract Infections/epidemiology , Rhinovirus
5.
BMC Infect Dis ; 22(1): 253, 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1741929

ABSTRACT

BACKGROUND: Human rhinovirus (HRV) is the predominant etiological agent of the common cold in children and adults. A recent study showed that the inhibitory effect of face masks on viral shedding of HRV was less prominent than that on other respiratory viruses. Considering that most Chinese people have worn face masks in public area since the outbreak of coronavirus disease 2019, we aimed to find out whether HRV prevailed among children in 2020 and demonstrate the details of the epidemiological features of HRV under such a special circumstance. METHODS: We summarized the incidences of various respiratory virus infections in patients who visited the Children's Hospital of Fudan University during 2018-2020, and genotyped HRV positive nasopharyngeal specimens collected from 316 inpatients and 72 outpatients that visited the hospital in 2020. RESULTS: There was a major prevalence of HRV among children in the latter half of 2020, with a clear seasonality that HRV-As prevailed in summer while HRV-Cs in autumn. HRV-As were more prone to cause severe lower respiratory tract infections (LRTI), while HRV-Cs were closely associated with childhood wheezing. The predominant genotypes were A11, A28, A47, A82, A101, C40 and C43. Notably, A21, A82 and A101 took up larger proportions in severe cases than in non-severe cases. CONCLUSIONS: Our findings described a major prevalence of HRVs among children in 2020, which highlight the unique transmitting pattern of HRV and help to narrow the targets for antiviral strategies.


Subject(s)
COVID-19 , Picornaviridae Infections , Adult , Child , China/epidemiology , Humans , Masks , Picornaviridae Infections/epidemiology , Picornaviridae Infections/prevention & control , Rhinovirus/genetics
6.
Antiviral Res ; 200: 105279, 2022 04.
Article in English | MEDLINE | ID: covidwho-1729533

ABSTRACT

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome conoravirus 2 (SARS-CoV-2) remains a promising therapeutic target to combat COVID-19. Our group recently described a novel duplexed biochemical assay that combines self-assembled monolayers of alkanethiolates on gold with matrix assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) to simultaneously measure 3CLpro and human rhinovirus 3C protease activities. This study describes applying the assay for the completion of a high-throughput duplexed screen of 300,000 diverse, drug-like small molecules in 3 days. The hits were confirmed and evaluated in dose response analyses against recombinant 3CLpro, HRV3C, and the human Cathepsin L proteases. The 3CLpro specific inhibitors were further assessed for activity in cellular cytotoxicity and anti-viral assays. Structure activity relationship studies informed on structural features required for activity and selectivity to 3CLpro over HRV3C. These results will guide the optimization of 3CLpro selective inhibitors to combat COVID-19 along with antiviral compounds against coronaviruses and rhinoviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans , Mass Spectrometry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Rhinovirus
8.
PLoS One ; 17(1): e0262874, 2022.
Article in English | MEDLINE | ID: covidwho-1643288

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has circulated worldwide and causes coronavirus disease 2019 (COVID-19). At the onset of the COVID-19 pandemic, infection control measures were taken, such as hand washing, mask wearing, and behavioral restrictions. However, it is not fully clear how the effects of these non-pharmaceutical interventions changed the prevalence of other pathogens associated with respiratory infections. In this study, we collected 3,508 nasopharyngeal swab samples from 3,249 patients who visited the Yamanashi Central Hospital in Japan from March 1, 2020 to February 28, 2021. We performed multiplex polymerase chain reaction (PCR) using the FilmArray Respiratory Panel and singleplex quantitative reverse transcription PCR targeting SARS-CoV-2 to detect respiratory disease-associated pathogens. At least one pathogen was detected in 246 (7.0%) of the 3,508 samples. Eleven types of pathogens were detected in the samples collected from March-May 2020, during which non-pharmaceutical interventions were not well implemented. In contrast, after non-pharmaceutical interventions were thoroughly implemented, only five types of pathogens were detected, and the majority were SARS-CoV-2, adenoviruses, or human rhinoviruses / enteroviruses. The 0-9 year age group had a higher prevalence of infection with adenoviruses and human rhinoviruses / enteroviruses compared with those 10 years and older, while those 10 years and older had a higher prevalence of infection with SARS-CoV-2 and other pathogens. These results indicated that non-pharmaceutical interventions likely reduced the diversity of circulating pathogens. Moreover, differences in the prevalence of pathogens were observed among the different age groups.


Subject(s)
Adenoviruses, Human/genetics , COVID-19/epidemiology , Enterovirus/genetics , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , SARS-CoV-2/genetics , Adenoviruses, Human/classification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , Enterovirus/classification , Female , Hand Disinfection/methods , Humans , Infant , Infant, Newborn , Japan/epidemiology , Male , Masks/supply & distribution , Middle Aged , Multiplex Polymerase Chain Reaction , Nasopharynx/virology , Prevalence , Quarantine/organization & administration , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Rhinovirus/classification , SARS-CoV-2/pathogenicity
9.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: covidwho-1632083

ABSTRACT

Rhinoviruses (RVs) have been reported as one of the main viral causes for severe respiratory illnesses that may require hospitalization, competing with the burden of other respiratory viruses such as influenza and RSV in terms of severity, economic cost, and resource utilization. With three species and 169 subtypes, RV presents the greatest diversity within the Enterovirus genus, and despite the efforts of the research community to identify clinically relevant subtypes to target therapeutic strategies, the role of species and subtype in the clinical outcomes of RV infection remains unclear. This review aims to collect and organize data relevant to RV illness in order to find patterns and links with species and/or subtype, with a specific focus on species and subtype diversity in clinical studies typing of respiratory samples.


Subject(s)
Picornaviridae Infections/virology , Rhinovirus/classification , Rhinovirus/genetics , Asthma/etiology , Coinfection/virology , Enterovirus , Enterovirus Infections/virology , Genotyping Techniques , Hospitalization , Humans , Respiratory Tract Infections/virology , Serotyping
10.
Emerg Microbes Infect ; 11(1): 412-423, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585244

ABSTRACT

Although frequently reported since the beginning of the pandemic, questions remain regarding the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) interaction with circulating respiratory viruses in coinfected patients. We here investigated dual infections involving early-pandemic SARS-CoV-2 and the Alpha variant and three of the most prevalent respiratory viruses, rhinovirus (RV) and Influenza A and B viruses (IAV and IBV), in reconstituted respiratory airway epithelial cells cultured at air-liquid interface. We found that SARS-CoV-2 replication was impaired by primary, but not secondary, rhino- and influenza virus infection. In contrast, SARS-CoV-2 had no effect on the replication of these seasonal respiratory viruses. Inhibition of SARS-CoV-2 correlated better with immune response triggered by RV, IAV and IBV than the virus entry. Using neutralizing antibody against type I and III interferons, SARS-CoV-2 blockade in dual infections could be partly prevented. Altogether, these data suggested that SARS-CoV-2 interaction with seasonal respiratory viruses would be modulated by interferon induction and could impact SARS-CoV-2 epidemiology when circulation of other respiratory viruses is restored.


Subject(s)
Coinfection/virology , Influenza A virus/physiology , Influenza B virus/physiology , Respiratory System/virology , Rhinovirus/physiology , SARS-CoV-2/physiology , Virus Replication/physiology , Coinfection/immunology , Humans , Immunity, Innate , Interferons/physiology
11.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1580428

ABSTRACT

BACKGROUND: We aimed to compare the clinical severity in patients who were coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinovirus or monoinfected with a single one of these viruses. METHODS: The study period ranged from 1 March 2020 to 28 February 2021 (one year). SARS-CoV-2 and other respiratory viruses were identified by real-time reverse-transcription-PCR as part of the routine work at Marseille University hospitals. Bacterial and fungal infections were detected by standard methods. Clinical data were retrospectively collected from medical files. This study was approved by the ethical committee of our institute. RESULTS: A total of 6034/15,157 (40%) tested patients were positive for at least one respiratory virus. Ninety-three (4.3%) SARS-CoV-2-infected patients were coinfected with another respiratory virus, with rhinovirus being the most frequent (62/93, 67%). Patients coinfected with SARS-CoV-2 and rhinovirus were significantly more likely to report a cough than those with SARS-CoV-2 monoinfection (62% vs. 31%; p = 0.0008). In addition, they were also significantly more likely to report dyspnea than patients with rhinovirus monoinfection (45% vs. 36%; p = 0.02). They were also more likely to be transferred to an intensive care unit and to die than patients with rhinovirus monoinfection (16% vs. 5% and 7% vs. 2%, respectively) but these differences were not statistically significant. CONCLUSIONS: A close surveillance and investigation of the co-incidence and interactions of SARS-CoV-2 and other respiratory viruses is needed. The possible higher risk of increased clinical severity in SARS-CoV-2-positive patients coinfected with rhinovirus warrants further large scale studies.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Picornaviridae Infections/epidemiology , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Coinfection/diagnosis , Female , Humans , Incidence , Male , Middle Aged , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Rhinovirus , SARS-CoV-2 , Severity of Illness Index , Young Adult
12.
Sci Rep ; 11(1): 23741, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1565734

ABSTRACT

The mechanisms explaining excess morbidity and mortality in respiratory infections among males are poorly understood. Innate immune responses are critical in protection against respiratory virus infections. We hypothesised that innate immune responses to respiratory viruses may be deficient in males. We stimulated peripheral blood mononuclear cells from 345 participants at age 16 years in a population-based birth cohort with three live respiratory viruses (rhinoviruses A16 and A1, and respiratory syncytial virus) and two viral mimics (R848 and CpG-A, to mimic responses to SARS-CoV-2) and investigated sex differences in interferon (IFN) responses. IFN-α responses to all viruses and stimuli were 1.34-2.06-fold lower in males than females (P = 0.018 - < 0.001). IFN-ß, IFN-γ and IFN-induced chemokines were also deficient in males across all stimuli/viruses. Healthcare records revealed 12.1% of males and 6.6% of females were hospitalized with respiratory infections in infancy (P = 0.017). In conclusion, impaired innate anti-viral immunity in males likely results in high male morbidity and mortality from respiratory virus infections.


Subject(s)
Imidazoles/immunology , Immunity, Innate , Oligodeoxyribonucleotides/immunology , Picornaviridae Infections/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Rhinovirus/immunology , Adolescent , Cohort Studies , Female , Humans , Interferons/immunology , Interferons/metabolism , Leukocytes, Mononuclear/immunology , Male , Picornaviridae Infections/mortality , Picornaviridae Infections/virology , Respiratory Syncytial Virus Infections/mortality , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/mortality , Respiratory Tract Infections/virology , SARS-CoV-2 , Sex Factors
13.
Elife ; 102021 08 05.
Article in English | MEDLINE | ID: covidwho-1513039

ABSTRACT

For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before disease-specific knowledge and tools are established. However, single cell analysis tools can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning workflow Tracking Responders EXpanding (T-REX) was created to identify changes in both rare and common cells across human immune monitoring settings. T-REX identified cells with highly similar phenotypes that localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infections. Specialized MHCII tetramer reagents that mark rhinovirus-specific CD4+ cells were left out during analysis and then used to test whether T-REX identified biologically significant cells. T-REX identified rhinovirus-specific CD4+ T cells based on phenotypically homogeneous cells expanding by ≥95% following infection. T-REX successfully identified hotspots of virus-specific T cells by comparing infection (day 7) to either pre-infection (day 0) or post-infection (day 28) samples. Plotting the direction and degree of change for each individual donor provided a useful summary view and revealed patterns of immune system behavior across immune monitoring settings. For example, the magnitude and direction of change in some COVID-19 patients was comparable to blast crisis acute myeloid leukemia patients undergoing a complete response to chemotherapy. Other COVID-19 patients instead displayed an immune trajectory like that seen in rhinovirus infection or checkpoint inhibitor therapy for melanoma. The T-REX algorithm thus rapidly identifies and characterizes mechanistically significant cells and places emerging diseases into a systems immunology context for comparison to well-studied immune changes.


Subject(s)
COVID-19/immunology , Leukemia, Myeloid, Acute/immunology , Melanoma/immunology , Picornaviridae Infections/immunology , Unsupervised Machine Learning , Adolescent , Adult , Algorithms , CD4-Positive T-Lymphocytes/immunology , Humans , Leukemia, Myeloid, Acute/drug therapy , Melanoma/drug therapy , Neoplasms , Rhinovirus/isolation & purification , SARS-CoV-2/isolation & purification , Young Adult
14.
Infect Genet Evol ; 96: 105106, 2021 12.
Article in English | MEDLINE | ID: covidwho-1506080

ABSTRACT

Coronaviruses (especially SARS-CoV-2) are characterized by rapid mutation and wide spread. As these characteristics easily lead to global pandemics, studying the evolutionary relationship between viruses is essential for clinical diagnosis. DNA sequencing has played an important role in evolutionary analysis. Recent alignment-free methods can overcome the problems of traditional alignment-based methods, which consume both time and space. This paper proposes a novel alignment-free method called the correlation coefficient feature vector (CCFV), which defines a correlation measure of the L-step delay of a nucleotide location from its location in the original DNA sequence. The numerical feature is a 16×L-dimensional numerical vector describing the distribution characteristics of the nucleotide positions in a DNA sequence. The proposed L-step delay correlation measure is interestingly related to some types of L+1 spaced mers. Unlike traditional gene comparison, our method avoids the computational complexity of multiple sequence alignment, and hence improves the speed of sequence comparison. Our method is applied to evolutionary analysis of the common human viruses including SARS-CoV-2, Dengue virus, Hepatitis B virus, and human rhinovirus and achieves the same or even better results than alignment-based methods. Especially for SARS-CoV-2, our method also confirms that bats are potential intermediate hosts of SARS-CoV-2.


Subject(s)
Genome, Viral/genetics , Phylogeny , Sequence Analysis, DNA/methods , Coronavirus/genetics , Dengue Virus/genetics , Hepatitis B/genetics , Humans , Models, Genetic , Rhinovirus/genetics , SARS-CoV-2/genetics , Sequence Alignment
15.
Influenza Other Respir Viruses ; 16(2): 190-192, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1505752

ABSTRACT

Stringent public health measures imposed across Canada to control the COVID-19 pandemic have nearly suppressed most seasonal respiratory viruses, with the notable exception of human rhinovirus/enterovirus (hRV/EV). Thanks to this unexpected persistence, we highlight that hRV/EV could serve as a sentinel for levels of contact rate in populations to inform on the efficiency, or the need of, public health measures to control the subsequent COVID-19 epidemic, but also for future epidemics from other seasonal or emerging respiratory pathogens.


Subject(s)
COVID-19 , Enterovirus , Respiratory Tract Infections , Viruses , Humans , Pandemics , Respiratory Tract Infections/epidemiology , Rhinovirus , SARS-CoV-2
16.
World J Pediatr ; 17(6): 590-596, 2021 12.
Article in English | MEDLINE | ID: covidwho-1491418

ABSTRACT

BACKGROUND: A series of public health preventive measures has been widely implemented in Beijing to control the coronavirus disease-19 (COVID-19) pandemic since January 2020. An evaluation of the effects of these preventive measures on the spread of other respiratory viruses is necessary. METHODS: Respiratory specimens collected from children with acute respiratory infections were tested by NxTAG™ respiratory pathogen panel assays during January 2017 and December 2020. Specimens characterized as rhinoviruses (RVs) were sequenced to identify the RV species and types. Then, the epidemiology results of respiratory pathogens in 2020 were compared with those from 2017 to 2019 using SPSS statistics 22.0. RESULTS: The positive rates of adenovirus (ADV), influenza virus (flu), RVs, and respiratory syncytial virus (RSV) dropped abruptly by 86.31%, 94.67%, 94.59%, and 92.17%, respectively, from February to May 2020, compared with the average level in the same period during 2017-2019. Positive rates of RVs then steeply increased from June 2020 (13.77%), to an apex (37.25%) in August 2020, significantly higher than the average rates (22.51%) in August 2017-2019 (P = 0.005). The increase, especially in group ≥ 3 years, was accompanied by the reopening of schools and kindergartens after the 23rd and 24th week of 2020 in Beijing. CONCLUSIONS: Whereas the abrupt drop in viral pathogen positive rates from February to May 2020 revealed the remarkable effects of the COVID-19 preventive measures, the sharp increase in positive rates of RVs from the 23rd week of 2020 might be explained by the reopening of schools and kindergartens in Beijing.


Subject(s)
COVID-19 , Respiratory Tract Infections , Beijing/epidemiology , Child , China/epidemiology , Hospitals , Humans , Infant , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Rhinovirus , SARS-CoV-2
17.
Microbiol Spectr ; 9(2): e0083121, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1476399

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has infected all age groups and disproportionately impacted vulnerable populations globally. Polymicrobial infections may play an important role in the development of SARS-CoV-2 infection in susceptible hosts. These coinfections may increase the risk of disease severity and pose challenges to the diagnosis, treatment, and prognosis of COVID-19. There have been limited SARS-CoV-2 coinfection studies. In this retrospective study, residual nucleic acid extracts from 796 laboratory-confirmed COVID-19-positive specimens, collected between March 2020 and February 2021, were analyzed using a Luminex NxTAG respiratory pathogen panel (RPP). Of these, 745 returned valid results and were used for analysis; 53 (7.1%) were positive for one or more additional pathogens. Six different respiratory viruses were detected among the 53 SARS-CoV-2-positive patient specimens, and 7 of those specimens tested positive for more than one additional respiratory virus. The most common pathogens include rhinovirus/enterovirus (RV/EV) (n = 22, 41.51%), human metapneumovirus (hMPV) (n = 18, 33.9%), and adenovirus (n = 12, 22.6%). Interestingly, there were no SARS-CoV-2 coinfections involving influenza A or influenza B in the study specimens. The median age of the SARS-CoV-2-positive patients with coinfections was 38 years; 53% identified as female, and 47% identified as male. Based on our retrospective analysis, respiratory coinfections associated with SARS-CoV-2-positive patients were more common in young children (≤9 years old), with white being the most common race. Our findings will likely prompt additional investigation of polymicrobial infection associated with SARS-CoV-2 during seasonal respiratory pathogen surveillance by public health laboratories. IMPORTANCE This examination of respiratory pathogen coinfections in SARS-CoV-2 patients will likely shed light on our understanding of polymicrobial infection associated with COVID-19. Our results should prompt public health authorities to improve seasonal respiratory pathogen surveillance practices and address the risk of disease severity.


Subject(s)
COVID-19/complications , Coinfection/virology , Respiratory Tract Infections/complications , Respiratory Tract Infections/virology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Enterovirus/genetics , Enterovirus/isolation & purification , Female , Humans , Male , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Middle Aged , Retrospective Studies , Rhinovirus/genetics , Rhinovirus/isolation & purification , SARS-CoV-2/genetics , Wisconsin , Young Adult
18.
Microbiol Spectr ; 9(2): e0073621, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1476398

ABSTRACT

The supply of testing equipment is vital in controlling the spread of SARS-CoV-2. We compared the diagnostic efficacy and tolerability of molded plastic (FinSwab; Valukumpu, Finland) versus flocked nylon (FLOQSwab; Copan, Italy) nasopharyngeal swabs in a clinical setting. Adults (n = 112) with suspected symptomatic COVID-19 infection underwent nasopharyngeal sampling with FinSwab and FLOQSwab from the same nostril at a drive-in coronavirus testing station. In a subset of 36 patients the samples were collected in a randomized order to evaluate the discomfort associated with sampling. SARS-CoV-2 and 16 other respiratory viruses, as well as human ß-actin mRNA were analyzed by using reverse transcriptase PCR (RT-PCR) assays. Among the 112 patients (mean age, 38 [standard deviation (SD), 14] years) ß-actin mRNA was found in all samples. There was no difference in the ß-actin mRNA cycle threshold (CT) values between FinSwab (mean, 22.3; SD, 3.61) and FLOQSwab (mean, 22.1; SD, 3.50; P = 0.46) swabs. There were 31 virus-positive cases (26 rhinovirus, 4 SARS-CoV-2, and 1 coronavirus-OC43), 24 of which were positive in both swabs; 3 rhinovirus positives were only found in the FinSwab, and similarly 4 rhinovirus positives were only found in the FLOQSwab. Rhinovirus CT values were similar between swab types. Of the 36 patients, 22 (61%) tolerated the sampling with the FinSwab better than with the FLOQSwab (P = 0.065). The molded plastic nasopharyngeal swab (FinSwab) was comparable to the standard flocked swab in terms of efficacy for respiratory virus detection and tolerability of sampling. IMPORTANCE We demonstrate that a molded plastic swab is a valid alternative to conventional brush-like swabs in collection of a nasopharyngeal sample for virus diagnostics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Specimen Handling/instrumentation , Actins/genetics , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Plastics , RNA, Messenger/genetics , Respiratory Tract Infections/diagnosis , Rhinovirus/isolation & purification , Specimen Handling/methods , Young Adult
19.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1470888

ABSTRACT

The ongoing COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a globally leading public health concern over the past two years. Despite the development and administration of multiple vaccines, the mutation of newer strains and challenges to universal immunity has shifted the focus to the lack of efficacious drugs for therapeutic intervention for the disease. As with SARS-CoV, MERS-CoV, and other non-respiratory viruses, flavonoids present themselves as a promising therapeutic intervention given their success in silico, in vitro, in vivo, and more recently, in clinical studies. This review focuses on data from in vitro studies analyzing the effects of flavonoids on various key SARS-CoV-2 targets and presents an analysis of the structure-activity relationships for the same. From 27 primary papers, over 69 flavonoids were investigated for their activities against various SARS-CoV-2 targets, ranging from the promising 3C-like protease (3CLpro) to the less explored nucleocapsid (N) protein; the most promising were quercetin and myricetin derivatives, baicalein, baicalin, EGCG, and tannic acid. We further review promising in silico studies featuring activities of flavonoids against SARS-CoV-2 and list ongoing clinical studies involving the therapeutic potential of flavonoid-rich extracts in combination with synthetic drugs or other polyphenols and suggest prospects for the future of flavonoids against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Flavonoids/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Rhinovirus/drug effects , Rhinovirus/physiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Virus Internalization/drug effects
20.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: covidwho-1469382

ABSTRACT

Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.


Subject(s)
Citric Acid Cycle/physiology , Energy Metabolism/physiology , Fatty Acids/biosynthesis , Glycolysis/physiology , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Adenoviridae/metabolism , Coronavirus/metabolism , Humans , Orthomyxoviridae/metabolism , Parainfluenza Virus 1, Human/metabolism , Respiratory Syncytial Viruses/metabolism , Rhinovirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL