Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
J Virol ; 96(8): e0025022, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1769824

ABSTRACT

In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.


Subject(s)
Antibodies, Viral , Cats , Deer , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/veterinary , Cats/virology , Cross Reactions/immunology , Deer/virology , SARS Virus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Zoonoses/diagnosis , Viral Zoonoses/virology
2.
Microbiol Spectr ; 10(1): e0122021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1636464

ABSTRACT

Accurate tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical in efforts to control its spread. The accuracy of tests for SARS-CoV-2 has been assessed numerous times, usually in reference to a gold standard diagnosis. One major disadvantage of that approach is the possibility of error due to inaccuracy of the gold standard, which is especially problematic for evaluating testing in a real-world surveillance context. We used an alternative approach known as Bayesian latent class modeling (BLCM), which circumvents the need to designate a gold standard by simultaneously estimating the accuracy of multiple tests. We applied this technique to a collection of 1,716 tests of three types applied to 853 individuals on a university campus during a 1-week period in October 2020. We found that reverse transcriptase PCR (RT-PCR) testing of saliva samples performed at a campus facility had higher sensitivity (median, 92.3%; 95% credible interval [CrI], 73.2 to 99.6%) than RT-PCR testing of nasal samples performed at a commercial facility (median, 85.9%; 95% CrI, 54.7 to 99.4%). The reverse was true for specificity, although the specificity of saliva testing was still very high (median, 99.3%; 95% CrI, 98.3 to 99.9%). An antigen test was less sensitive and specific than both of the RT-PCR tests, although the sample sizes with this test were small and the statistical uncertainty was high. These results suggest that RT-PCR testing of saliva samples at a campus facility can be an effective basis for surveillance screening to prevent SARS-CoV-2 transmission in a university setting. IMPORTANCE Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been vitally important during the COVID-19 pandemic. There are a variety of methods for testing for this virus, and it is important to understand their accuracy in choosing which one might be best suited for a given application. To estimate the accuracy of three different testing methods, we used a data set collected at a university that involved testing the same samples with multiple tests. Unlike most other estimates of test accuracy, we did not assume that one test was perfect but instead allowed for some degree of inaccuracy in all testing methods. We found that molecular tests performed on saliva samples at a university facility were similarly accurate as molecular tests performed on nasal samples at a commercial facility. An antigen test appeared somewhat less accurate than the molecular tests, but there was high uncertainty about that.


Subject(s)
Antigens, Viral/analysis , COVID-19/diagnosis , SARS Virus/immunology , SARS-CoV-2/isolation & purification , Saliva/virology , Antigens, Viral/blood , Bayes Theorem , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Humans , Predictive Value of Tests , Prevalence , Reproducibility of Results , SARS-CoV-2/immunology , Sensitivity and Specificity , Universities , Young Adult
3.
Rev Med Virol ; 31(6): e2234, 2021 11.
Article in English | MEDLINE | ID: covidwho-1574124

ABSTRACT

The coronavirus disease (Covid-19) pandemic is the most serious event of the year 2020, causing considerable global morbidity and mortality. The goal of this review is to provide a comprehensive summary of reported associations between inter-individual immunogenic variants and disease susceptibility or symptoms caused by the coronavirus strains severe acute respiratory syndrome-associated coronavirus, severe acute respiratory syndrome-associated coronavirus-2, and two of the main respiratory viruses, respiratory syncytial virus and influenza virus. The results suggest that the genetic background of the host could affect the levels of proinflammatory and anti-inflammatory cytokines and might modulate the progression of Covid-19 in affected patients. Notably, genetic variations in innate immune components such as toll-like receptors and mannose-binding lectin 2 play critical roles in the ability of the immune system to recognize coronavirus and initiate an early immune response to clear the virus and prevent the development of severe symptoms. This review provides promising clues related to the potential benefits of using immunotherapy and immune modulation for respiratory infectious disease treatment in a personalized manner.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Genetic Predisposition to Disease , Influenza, Human/immunology , Respiratory Syncytial Virus Infections/immunology , Severe Acute Respiratory Syndrome/immunology , Antiviral Agents/therapeutic use , Biological Variation, Individual , COVID-19/drug therapy , COVID-19/genetics , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Gene Expression , Humans , Immunity, Innate , Immunologic Factors/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/immunology , SARS Virus/drug effects , SARS Virus/immunology , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
4.
Eur Rev Med Pharmacol Sci ; 25(22): 7162-7184, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1552083

ABSTRACT

The last two decades have witnessed the emergence of three deadly coronaviruses (CoVs) in humans: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are still no reliable and efficient therapeutics to manage the devastating consequences of these CoVs. Of these, SARS-CoV-2, the cause of the currently ongoing coronavirus disease 2019 (COVID-19) pandemic, has posed great global health concerns. The COVID-19 pandemic has resulted in an unprecedented crisis with devastating socio-economic and health impacts worldwide. This highlights the fact that CoVs continue to evolve and have the genetic flexibility to become highly pathogenic in humans and other mammals. SARS-CoV-2 carries a high genetic homology to the previously identified CoV (SARS-CoV), and the immunological and pathogenic characteristics of SARS-CoV-2, SARS-CoV, and MERS contain key similarities and differences that can guide therapy and management. This review presents salient and updated information on comparative pathology, molecular pathogenicity, immunological features, and genetic characterization of SARS-CoV, MERS-CoV, and SARS-CoV-2; this can help in the design of more effective vaccines and therapeutics for countering these pathogenic CoVs.


Subject(s)
COVID-19/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Pathology, Molecular/methods , SARS Virus/genetics , SARS-CoV-2/genetics , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Female , Global Health/economics , Humans , Male , Mammals , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , SARS Virus/immunology , SARS Virus/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virulence
5.
Int J Med Sci ; 18(3): 763-767, 2021.
Article in English | MEDLINE | ID: covidwho-1524479

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is an emerging disease. There has been a rapid increase in cases and deaths since it was identified in Wuhan, China, in early December 2019, with over 4,000,000 cases of COVID-19 including at least 250,000 deaths worldwide as of May 2020. However, limited data about the clinical characteristics of pregnant women with COVID-19 have been reported. Given the maternal physiologic and immune function changes during pregnancy, pregnant women may be at a higher risk of being infected with SARS-CoV-2 and developing more complicated clinical events. Information on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) may provide insights into the effects of COVID-19's during pregnancy. Even though SARS and MERS have been associated with miscarriage, intrauterine death, fetal growth restriction and high case fatality rates, the clinical course of COVID-19 pneumonia in pregnant women has been reported to be similar to that in non-pregnant women. In addition, pregnant women do not appear to be at a higher risk of catching COVID-19 or suffering from more severe disease than other adults of similar age. Moreover, there is currently no evidence that the virus can be transmitted to the fetus during pregnancy or during childbirth. Babies and young children are also known to only experience mild forms of COVID-19. The aims of this systematic review were to summarize the possible symptoms, treatments, and pregnancy outcomes of women infected with COVID-19 during pregnancy.


Subject(s)
COVID-19/epidemiology , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome , SARS-CoV-2/immunology , Adult , COVID-19/immunology , COVID-19/therapy , COVID-19/transmission , Female , Humans , Infant, Newborn , Maternal Exposure , Middle East Respiratory Syndrome Coronavirus/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/therapy , Pregnancy Complications, Infectious/virology , SARS Virus/immunology , SARS-CoV-2/isolation & purification , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index
6.
Signal Transduct Target Ther ; 6(1): 367, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475287

ABSTRACT

Cytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.


Subject(s)
Cytokine Release Syndrome , Signal Transduction/immunology , Acute Disease , Autoimmune Diseases/complications , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , COVID-19/complications , COVID-19/immunology , COVID-19/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Graft vs Host Disease/complications , Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive/adverse effects , Influenza, Human/complications , Influenza, Human/immunology , Neoplasms/complications , Neoplasms/immunology , Neoplasms/therapy , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/therapy
7.
Viruses ; 13(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470996

ABSTRACT

Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1ß. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1ß release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.


Subject(s)
Immunity, Innate/immunology , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Viral Envelope Proteins/immunology , Viral Fusion Proteins/immunology , Cell Line, Tumor , Cytomegalovirus/immunology , Hepacivirus/immunology , Humans , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Pyroptosis/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , THP-1 Cells
8.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1462245

ABSTRACT

Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Polysaccharides/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Motifs , Animals , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Polysaccharides/genetics , Protein Domains , SARS Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Biosci Rep ; 41(9)2021 09 30.
Article in English | MEDLINE | ID: covidwho-1406416

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic of the Coronavirus disease in late 2019 (COVID-19). Vaccine development efforts have predominantly been aimed at 'Extra-viral' Spike (S) protein as vaccine vehicles, but there are concerns regarding 'viral immune escape' since multiple mutations may enable the mutated virus strains to escape from immunity against S protein. The 'Intra-viral' Nucleocapsid (N-protein) is relatively conserved among mutant strains of coronaviruses during spread and evolution. Herein, we demonstrate novel vaccine candidates against SARS-CoV-2 by using the whole conserved N-protein or its fragment/peptides. Using ELISA assay, we showed that high titers of specific anti-N antibodies (IgG, IgG1, IgG2a, IgM) were maintained for a reasonably long duration (> 5 months), suggesting that N-protein is an excellent immunogen to stimulate host immune system and robust B-cell activation. We synthesized three peptides located at the conserved regions of N-protein among CoVs. One peptide showed as a good immunogen for vaccination as well. Cytokine arrays on post-vaccination mouse sera showed progressive up-regulation of various cytokines such as IFN-γ and CCL5, suggesting that TH1 associated responses are also stimulated. Furthermore, vaccinated mice exhibited an elevated memory T cells population. Here, we propose an unconventional vaccine strategy targeting the conserved N-protein as an alternative vaccine target for coronaviruses. Moreover, we generated a mouse monoclonal antibody specifically against an epitope shared between SARS-CoV and SARS-CoV-2, and we are currently developing the First-in-Class humanized anti-N-protein antibody to potentially treat patients infected by various CoVs in the future.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Animals , Antibodies, Monoclonal, Murine-Derived , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Coronavirus Nucleocapsid Proteins/genetics , Epitopes/immunology , Humans , Immune Evasion , Immunogenicity, Vaccine , Mice , Models, Animal , Pandemics/prevention & control , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
10.
Front Immunol ; 11: 565521, 2020.
Article in English | MEDLINE | ID: covidwho-1389164

ABSTRACT

Neurological disorders caused by neuroviral infections are an obvious pathogenic manifestation. However, non-neurotropic viruses or peripheral viral infections pose a considerable challenge as their neuropathological manifestations do not emerge because of primary infection. Their secondary or bystander pathologies develop much later, like a syndrome, during and after the recovery of patients from the primary disease. Massive inflammation caused by peripheral viral infections can trigger multiple neurological anomalies. These neurological damages may range from a general cognitive and motor dysfunction up to a wide spectrum of CNS anomalies, such as Acute Necrotizing Hemorrhagic Encephalopathy, Guillain-Barré syndrome, Encephalitis, Meningitis, anxiety, and other audio-visual disabilities. Peripheral viruses like Measles virus, Enteroviruses, Influenza viruses (HIN1 series), SARS-CoV-1, MERS-CoV, and, recently, SARS-CoV-2 are reported to cause various neurological manifestations in patients and are proven to be neuropathogenic even in cellular and animal model systems. This review presents a comprehensive picture of CNS susceptibilities toward these peripheral viral infections and explains some common underlying themes of their neuropathology in the human brain.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Neurogenic Inflammation/complications , Neurogenic Inflammation/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , SARS Virus/immunology , Severe Acute Respiratory Syndrome/complications , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/virology , COVID-19 , Coronavirus Infections/virology , Cytokines/blood , Disease Models, Animal , Humans , Microglia/immunology , Microglia/virology , Neurogenic Inflammation/virology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology
11.
HLA ; 96(3): 277-298, 2020 09.
Article in English | MEDLINE | ID: covidwho-1388402

ABSTRACT

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Subject(s)
Coronavirus Infections/epidemiology , HIV Infections/epidemiology , HLA Antigens/chemistry , Influenza, Human/epidemiology , Pandemics , Peptides/chemistry , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Viral Proteins/chemistry , Africa/epidemiology , Americas/epidemiology , Amino Acid Sequence , Asia/epidemiology , Australia/epidemiology , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe/epidemiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA Antigens/classification , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Kinetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Peptides/genetics , Peptides/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Proteins/genetics , Viral Proteins/immunology
13.
N Engl J Med ; 385(15): 1401-1406, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1361670

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e., those with potential to cause disease in humans in the future) would be ideal. Here we provide data showing that potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine. The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection. These findings show the feasibility of a pan-sarbecovirus vaccine strategy. (Funded by the Singapore National Research Foundation and National Medical Research Council.).


Subject(s)
Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , B-Lymphocytes , Humans , Immunogenicity, Vaccine , Phylogeny , SARS Virus/genetics , SARS-CoV-2/genetics , Survivors
14.
Front Immunol ; 12: 696370, 2021.
Article in English | MEDLINE | ID: covidwho-1357528

ABSTRACT

The COVID-19 pandemic is caused by SARS-CoV-2, a novel zoonotic coronavirus. Emerging evidence indicates that preexisting humoral immunity against other seasonal human coronaviruses (HCoVs) plays a critical role in the specific antibody response to SARS-CoV-2. However, current work to assess the effects of preexisting and cross-reactive anti-HCoVs antibodies has been limited. To address this issue, we have adapted our previously reported multiplex assay to simultaneously and quantitatively measure anti-HCoV antibodies. The full mPlex-CoV panel covers the spike (S) and nucleocapsid (N) proteins of three highly pathogenic HCoVs (SARS-CoV-1, SARS-CoV-2, MERS) and four human seasonal strains (OC43, HKU1, NL63, 229E). Combining this assay with volumetric absorptive microsampling (VAMS), we measured the anti-HCoV IgG, IgA, and IgM antibodies in fingerstick blood samples. The results demonstrate that the mPlex-CoV assay has high specificity and sensitivity. It can detect strain-specific anti-HCoV antibodies down to 0.1 ng/ml with 4 log assay range and with low intra- and inter-assay coefficients of variation (%CV). We also estimate multiple strain HCoVs IgG, IgA and IgM concentration in VAMS samples in three categories of subjects: pre-COVID-19 (n=21), post-COVID-19 convalescents (n=19), and COVID-19 vaccine recipients (n=14). Using metric multidimensional scaling (MDS) analysis, HCoVs IgG concentrations in fingerstick blood samples were well separated between the pre-COVID-19, post-COVID-19 convalescents, and COVID-19 vaccine recipients. In addition, we demonstrate how multi-dimensional scaling analysis can be used to visualize IgG mediated antibody immunity against multiple human coronaviruses. We conclude that the combination of VAMS and the mPlex-Cov assay is well suited to performing remote study sample collection under pandemic conditions to monitor HCoVs antibody responses in population studies.


Subject(s)
Antibodies, Viral/blood , Coronavirus/immunology , Cross Reactions/immunology , Immunoassay/methods , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19/immunology , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus OC43, Human/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
15.
Front Immunol ; 12: 694355, 2021.
Article in English | MEDLINE | ID: covidwho-1348489

ABSTRACT

BACKGROUND: Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections. METHODS: This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures. RESULTS: Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains. CONCLUSION: The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach's predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.


Subject(s)
COVID-19/immunology , Gene Expression Regulation/immunology , Lung/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Animals , Humans , Lung/virology , Mice
16.
MAbs ; 13(1): 1953683, 2021.
Article in English | MEDLINE | ID: covidwho-1327301

ABSTRACT

The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread social and economic disruption. Effective interventions are urgently needed for the prevention and treatment of COVID-19. Neutralizing monoclonal antibodies (mAbs) have demonstrated their prophylactic and therapeutic efficacy against SARS-CoV-2, and several have been granted authorization for emergency use. Here, we discover and characterize a fully human cross-reactive mAb, MW06, which binds to both SARS-CoV-2 and SARS-CoV spike receptor-binding domain (RBD) and disrupts their interaction with angiotensin-converting enzyme 2 (ACE2) receptors. Potential neutralization activity of MW06 was observed against both SARS-CoV-2 and SARS-CoV in different assays. The complex structure determination and epitope alignment of SARS-CoV-2 RBD/MW06 revealed that the epitope recognized by MW06 is highly conserved among SARS-related coronavirus strains, indicating the potential broad neutralization activity of MW06. In in vitro assays, no antibody-dependent enhancement (ADE) of SARS-CoV-2 infection was observed for MW06. In addition, MW06 recognizes a different epitope from MW05, which shows high neutralization activity and has been in a Phase 2 clinical trial, supporting the development of the cocktail of MW05 and MW06 to prevent against future escaping variants. MW06 alone and the cocktail show good effects in preventing escape mutations, including a series of variants of concern, B.1.1.7, P.1, B.1.351, and B.1.617.1. These findings suggest that MW06 recognizes a conserved epitope on SARS-CoV-2, which provides insights for the development of a universal antibody-based therapy against SARS-related coronavirus and emerging variant strains, and may be an effective anti-SARS-CoV-2 agent.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS Virus/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antibody-Dependent Enhancement , COVID-19/drug therapy , COVID-19/therapy , Conserved Sequence , Cross Reactions , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Models, Molecular , Neutralization Tests , Pandemics , Protein Domains , Protein Interaction Domains and Motifs , SARS Virus/chemistry , SARS Virus/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
17.
Virology ; 559: 165-172, 2021 07.
Article in English | MEDLINE | ID: covidwho-1198236

ABSTRACT

SARS coronavirus 1 (SARS-CoV-1) causes a respiratory infection that can lead to acute respiratory distress characterized by inflammation and high levels of cytokines in the lung tissue. In this study we constructed a herpes simplex virus 1 replication-defective mutant vector expressing SARS-CoV-1 spike protein as a potential vaccine vector and to probe the effects of spike protein on host cells. The spike protein expressed from this vector is functional in that it localizes to the surface of infected cells and induces fusion of ACE2-expressing cells. In immunized mice, the recombinant vector induced antibodies that bind to spike protein in an ELISA assay and that show neutralizing activity. The spike protein expressed from this vector can induce the expression of cytokines in an ACE2-independent, MyD88-dependent process. These results argue that the SARS-CoV-1 spike protein intrinsically activates signaling pathways that induce cytokines and contribute directly to the inflammatory process of SARS.


Subject(s)
Antibodies, Neutralizing/immunology , Herpesvirus 1, Human/genetics , Immunity, Innate , SARS Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Fusion , Cell Line , Cytokines/immunology , Genetic Vectors , Humans , Mice , SARS Virus/genetics , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/immunology
18.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1325680

ABSTRACT

Nowadays, type II diabetes mellitus, more specifically ensuing diabetic nephropathy, and severe COVID-19 disease are known to be closely associated. The exact mechanisms behind this association are less known. An implication for the angiotensin-converting enzyme 2 remains controversial. Some researchers have started looking into other potential actors, such as neuropilin-1, mitochondrial glutathione, vitamin D, and DPP4. In particular, neuropilin-1 seems to play an important role in the underlying mechanism linking COVID-19 and diabetic nephropathy. We suggest, based on the findings in this review, that its up-regulation in the diabetic kidney facilitates viral entry in this tissue, and that the engagement of both processes leads to a depletion of neuropilin-1, which was demonstrated to be strongly associated with the pathogenesis of DN. More studies are needed to confirm this hypothesis, and research should be directed towards elucidating the potential roles of all these suggested actors and eventually discovering new therapeutic strategies that could reduce the burden of COVID-19 in patients with diabetic nephropathy.


Subject(s)
COVID-19/complications , COVID-19/immunology , Diabetic Nephropathies/complications , Diabetic Nephropathies/immunology , Angiotensin-Converting Enzyme 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Glutathione/metabolism , Humans , Neuropilin-1/metabolism , SARS Virus/immunology , Vitamin D/metabolism
19.
Front Immunol ; 12: 688758, 2021.
Article in English | MEDLINE | ID: covidwho-1304592

ABSTRACT

Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/metabolism , Interferons/antagonists & inhibitors , Interferons/immunology , Receptors, Immunologic/metabolism , Amino Acid Sequence/genetics , Animals , COVID-19/pathology , DEAD Box Protein 58/immunology , Deltacoronavirus/genetics , Deltacoronavirus/immunology , Humans , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Interferon Regulatory Factor-3/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Phosphorylation , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Receptors, Immunologic/immunology , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Swine , Ubiquitination/physiology
20.
Arch Pathol Lab Med ; 145(10): 1194-1211, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1299680

ABSTRACT

CONTEXT.­: The purpose of this review was to compare 3 coronavirus diseases, including severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 caused by SARS-CoV, MERS-CoV, and SARS-CoV-2 viruses, respectively. OBJECTIVE.­: To cover the following topics: clinical considerations, viral characteristics, pathology, immune response, pathogenesis, and the prognosis associated with each coronavirus disease in humans. DATA SOURCES.­: Clinically, flu-like symptoms are usual at the time of presentation for all 3 diseases, but these vary from asymptomatic to severe multisystem involvement. The pathology associated with symptomatic severe acute respiratory syndrome and COVID-19 has been well described, the most prominent of which is diffuse alveolar damage. The immune response to each of these viruses is highly complex and includes both humoral and cellular components that can have a significant impact on prognosis. In severe cases of COVID-19, a dysregulated innate host immune system can initiate a hyperinflammatory syndrome dominated by endothelial dysfunction that can lead to a hypercoagulable state with microthrombi, resulting in a systemic microvascular and macrovascular disease. CONCLUSIONS.­: The severe acute respiratory syndrome and Middle East respiratory syndrome epidemics have been limited, involving approximately 8000 and 2500 individuals, respectively. In contrast, COVID-19 has resulted in a worldwide pandemic with more than 177 million cases and 3.9 million deaths as of June 15, 2021, and fatality rates ranging from less than 0.1% to approximately 10% depending upon the country. Ending on a positive note, the development of a number of vaccines, at least 6 of which now are in clinical use, should mitigate and eventually control the devastating COVID-19 pandemic.


Subject(s)
COVID-19/immunology , Coronavirus Infections/immunology , Immune System/immunology , Severe Acute Respiratory Syndrome/immunology , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19/epidemiology , COVID-19/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pandemics/prevention & control , Prognosis , SARS Virus/immunology , SARS Virus/physiology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL