Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Aging (Albany NY) ; 14(3): 1110-1127, 2022 02 04.
Article in English | MEDLINE | ID: covidwho-1675399

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has induced a worldwide pandemic since early 2020. COVID-19 causes pulmonary inflammation, secondary pulmonary fibrosis (PF); however, there are still no effective treatments for PF. The present study aimed to explore the inhibitory effect of dihydroartemisinin (DHA) on pulmonary inflammation and PF, and its molecular mechanism. Morphological changes and collagen deposition were analyzed using hematoxylin-eosin staining, Masson staining, and the hydroxyproline content. DHA attenuated early alveolar inflammation and later PF in a bleomycin-induced rat PF model, and inhibited the expression of interleukin (IL)-1ß, IL-6, tumor necrosis factor α (TNFα), and chemokine (C-C Motif) Ligand 3 (CCL3) in model rat serum. Further molecular analysis revealed that both pulmonary inflammation and PF were associated with increased transforming growth factor-ß1 (TGF-ß1), Janus activated kinase 2 (JAK2), and signal transducer and activator 3(STAT3) expression in the lung tissues of model rats. DHA reduced the inflammatory response and PF in the lungs by suppressing TGF-ß1, JAK2, phosphorylated (p)-JAK2, STAT3, and p-STAT3. Thus, DHA exerts therapeutic effects against bleomycin-induced pulmonary inflammation and PF by inhibiting JAK2-STAT3 activation. DHA inhibits alveolar inflammation, and attenuates lung injury and fibrosis, possibly representing a therapeutic candidate to treat PF associated with COVID-19.


Subject(s)
Artemisinins/therapeutic use , Pneumonia/prevention & control , Pulmonary Fibrosis/prevention & control , Animals , Artemisinins/pharmacology , Janus Kinase 2/antagonists & inhibitors , Male , Rats , Rats, Wistar , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects
2.
Drug Discov Today ; 27(2): 390-400, 2022 02.
Article in English | MEDLINE | ID: covidwho-1487687

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the unprecedented COVID-19 pandemic, which has infected over 178 million people worldwide. Even with new vaccines, global herd immunity will not be reached soon. New cases and viral variants are being reported at an alarming rate. Effective antiviral treatment is urgently needed. Patients with severe COVID-19 suffer from life-threatening respiratory failure due to acute respiratory distress syndrome in their lungs, a leading cause of COVID-19 mortality. This lung hyper-inflammation is induced by virus-caused massive tissue damage that is associated with uncontrolled cytokine release, known as a cytokine storm, through JAK/STAT signaling pathways. Here, we review the FDA-approved JAK inhibitors that are being clinically evaluated and repurposed for the treatment of patients with severe COVID-19 by calming SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Humans
3.
J Ethnopharmacol ; 283: 114701, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1446835

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu Decoction (XFBD), one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, plays an important role in the treatment of mild and/or common patients with dampness-toxin obstructing lung syndrome. AIM OF THE STUDY: The present work aims to elucidate the protective effects and the possible mechanism of XFBD against the acute inflammation and pulmonary fibrosis. METHODS: We use TGF-ß1 induced fibroblast activation model and LPS/IL-4 induced macrophage inflammation model as in vitro cell models. The mice model of lung fibrosis was induced by BLM via endotracheal drip, and then XFBD (4.6 g/kg, 9.2 g/kg) were administered orally respectively. The efficacy and molecular mechanisms in the presence or absence of XFBD were investigated. RESULTS: The results proved that XFBD can effectively inhibit fibroblast collagen deposition, down-regulate the level of α-SMA and inhibit the migration of fibroblasts. IL-4 induced macrophage polarization was also inhibited and the secretions of the inflammatory factors including IL6, iNOS were down-regulated. In vivo experiments, the results proved that XFBD improved the weight loss and survival rate of the mice. The XFBD high-dose administration group had a significant effect in inhibiting collagen deposition and the expression of α-SMA in the lungs of mice. XFBD can reduce bleomycin-induced pulmonary fibrosis by inhibiting IL-6/STAT3 activation and related macrophage infiltration. CONCLUSIONS: Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway.


Subject(s)
COVID-19/drug therapy , Drugs, Chinese Herbal , Inflammation/drug therapy , Macrophages/drug effects , SARS-CoV-2 , Signal Transduction/drug effects , Animals , Cell Survival/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phytotherapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , RAW 264.7 Cells , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
4.
Comput Biol Med ; 137: 104780, 2021 10.
Article in English | MEDLINE | ID: covidwho-1363941

ABSTRACT

BACKGROUND: Proinflammatory cytokines are correlated with the severity of disease in patients with COVID-19. IL6-mediated activation of STAT3 proliferates proinflammatory responses that lead to cytokine storm promotion. Thus, STAT3 inhibitors may play a crucial role in managing the COVID-19 pathogenesis. The present study discusses a method for predicting inhibitors against the STAT3 signaling pathway. METHOD: The main dataset comprises 1565 STAT3 inhibitors and 1671 non-inhibitors used for training, testing, and evaluation of models. A number of machine learning classifiers have been implemented to develop the models. RESULTS: The outcomes of the data analysis show that rings and aromatic groups are significantly abundant in STAT3 inhibitors compared to non-inhibitors. First, we developed models using 2-D and 3-D chemical descriptors and achieved a maximum AUC of 0.84 and 0.73, respectively. Second, fingerprints are used to build predictive models and achieved 0.86 AUC with an accuracy of 78.70% on the validation dataset. Finally, models were developed using hybrid descriptors, which achieved a maximum of 0.87 AUC with 78.55% accuracy on the validation dataset. CONCLUSION: We used the best model to identify STAT3 inhibitors in FDA-approved drugs and found few drugs (e.g., Tamoxifen and Perindopril) to manage the cytokine storm in COVID-19 patients. A webserver "STAT3In" (https://webs.iiitd.edu.in/raghava/stat3in/) has been developed to predict and design STAT3 inhibitors.


Subject(s)
COVID-19 , Cytokine Release Syndrome/drug therapy , Drug Design , STAT3 Transcription Factor/antagonists & inhibitors , COVID-19/drug therapy , Humans
5.
Phytother Res ; 34(12): 3200-3210, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-964631

ABSTRACT

Rosa rugosa Thunb., is as a medicinal plant known for anti-diabetic, and anti-inflammatory activities. However, the specific active compounds responsible for the individual pharmacological effects of in R. rugosa extract (95% EtOH) remain unknown. Here, we hypothesized that terpenoid structure, the most abundant constituents in R. rugosa extract, are responsible for its anti-inflammatory activity. We investigated the phytochemical substituents (compounds 1-13) and newly purified 11-methoxy polisin A, and 13-methoxy bisaborosaol F using NMR and ESI-MS and to screened their effects on NO production in LPS-induced macrophages. Rugosic acid A (RA) induced to ameliorate NO production, iNOS, and pro-inflammatory cytokines associated with the NF-κB. And, RA suppressed IL-6 secretion and IL-6-mediated STAT3 activation in LPS-mediated inflammation. In addition, RA was evaluated in LPS-mediated acute lung injury (ALI) model similar to acute pneumonia. Our results suggested that RA was suppressed to translocate nuclear NF-κB and IL-6-mediated STAT3 activation. Finally, RA led to amelioration of ALI by decreasing myeloperoxidase (MPO) and inhibiting phosphorylation of NF-κB and STAT3. Our group originally found that R. rugosa extract had new methoxy compounds and RA may be alternative natural agent for acute pneumonia similar to severe acute respiratory syndrome by coronavirus.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Interleukin-6/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Rosa , STAT3 Transcription Factor/antagonists & inhibitors , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Disease Models, Animal , Female , Humans , Lipopolysaccharides , Mice, Inbred BALB C
6.
Int J Mol Sci ; 21(14)2020 Jul 21.
Article in English | MEDLINE | ID: covidwho-671084

ABSTRACT

Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Catechin/analogs & derivatives , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Antioxidants/therapeutic use , Autoimmune Diseases/drug therapy , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , Catechin/therapeutic use , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Cytokine Release Syndrome/pathology , Humans , NF-kappa B/antagonists & inhibitors , Pandemics , Plant Extracts/therapeutic use , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , SARS-CoV-2 , STAT1 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL