Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 670
Filter
1.
Nat Commun ; 13(1): 6375, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2185822

ABSTRACT

Since its onset in December 2019, severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, has caused over 6.5 million deaths worldwide as of October 2022. Attempts to curb viral transmission rely heavily on reliable testing to detect infections since a large number of transmissions are carried through asymptomatic individuals. Many available detection methods fall short in terms of reliability or point-of-care applicability. Here, we report an electrochemical approach targeting a viral proteolytic enzyme, 3CLpro, as a marker of active infection. We detect proteolytic activity directly from untreated saliva within one minute of sample incubation using a reduction-oxidation pH indicator. Importantly, clinical tests of saliva samples from 50 subjects show accurate detection of SARS-CoV-2, with high sensitivity and specificity, validated by PCR testing. These, coupled with our platform's ultrafast detection, simplicity, low cost and point-of-care compatibility, make it a promising method for the real-world SARS-CoV-2 mass-screening.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Saliva , Reproducibility of Results , Electronics , Viral Proteases
2.
N Z Med J ; 135(1559): 53-58, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-2147482

ABSTRACT

AIM: To compare detection of SARS-CoV-2 from paired nasopharyngeal swabs (NPS) and saliva using molecular methods in common use for testing swabs in New Zealand. METHOD: Samples from individuals testing positive for SARS-CoV-2 in Auckland, Wellington and Dunedin were tested at the local laboratories using methods previously established for these sample types. RESULTS: One hundred and ninety-six paired samples from unique individuals were tested, with 46 (23%) positive from either sample type, of which 43/46 (93%) tested positive from NPS, and 42/46 (91%) from saliva, indicating no significant difference in performance between sample types (p=0.69). The average Δ Ct between saliva and nasopharyngeal swabs overall across the sample set was 0.22 cycles, indicating excellent concordance; however, the difference between NPS and saliva collected from the same individual was quite variable with up to 19 cycles difference between the sample types. CONCLUSION: We found that saliva is an equivalent sample type to nasopharyngeal swab for the detection of SARS-CoV-2 in our laboratories using multiple assay combinations and is suitable for use as a diagnostic and surveillance test for selected groups of individuals.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Humans , Nasopharynx , New Zealand , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods
3.
Front Cell Infect Microbiol ; 12: 831744, 2022.
Article in English | MEDLINE | ID: covidwho-2162960

ABSTRACT

The oral cavity remains an underappreciated site for SARS-CoV-2 infection despite the myriad oral conditions observed in COVID-19 patients. Recently, replicating SARS-CoV-2 was found inside salivary epithelial cells resulting in inflammation and atrophy of salivary glands. Saliva possesses healing properties crucial for maintaining the health of the oral mucosa. Specifically, salivary antimicrobial peptides, most notable, histatin-5 exclusively produced in salivary glands, plays a vital role in innate immunity against colonizing microbial species. The demonstration of SARS-CoV-2 destruction of gland tissue where histatin-5 is produced strongly indicate that histatin-5 production is compromised due to COVID-19. Here we present a case of a patient presenting with unexplained chronic oral dysesthesia and dysgeusia post-recovery from COVID-19. To explore potential physiological mechanisms behind the symptoms, we comparatively analyzed saliva samples from the patient and matched healthy subject for histatin-5 and key cytokines. Findings demonstrated significantly reduced histatin-5 levels in patient's saliva and activation of the Th17 inflammatory pathway. As histatin-5 exhibits potent activity against the opportunistic oral pathogen Candida albicans, we evaluated saliva potency against C. albicans ex vivo. Compared to control, patient saliva exhibited significantly reduced anti-candidal efficacy. Although speculative, based on history and salivary analysis we hypothesize that salivary histatin-5 production may be compromised due to SARS-CoV-2 mediated salivary gland destruction. With the current lack of emphasis on implications of COVID-19 on oral health, this report may provide lacking mechanistic insights that may lead to reassessment of risks for oral opportunistic infections and mucosal inflammatory processes in acutely-ill and recovered COVID-19 patients.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Mouth , SARS-CoV-2 , Saliva/chemistry , Salivary Proteins and Peptides/analysis
4.
J Sleep Res ; 31(6): e13591, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2137087

ABSTRACT

This study examined the role of sleep disturbances and insomnia in the context of stress reactivity in adolescence. One-hundred and thirty-five 11-18 year olds (Mage  = 14.2 years, SD = 1.9, 52% female) completed the Trier Social Stress Test for Children. Salivary cortisol and subjective stress ratings were collected at six time points, and heart rate as well as heart rate variability were measured pre-, during and post-stress induction. Additionally, sleep disturbances and insomnia diagnosis were assessed by a self-report questionnaire and a sleep interview. Robust mixed models investigated if adolescents with compared with adolescents without (a) sleep disturbances and (b) insomnia differ regarding cortisol, heart rate, heart rate variability and psychological stress reactivity considering gender effects. The results indicated that boys with high sleep disturbances showed higher cortisol activity compared with boys with low sleep disturbances, B = 0.88, p < 0.05. Moreover, in boys with insomnia, heart rate and alpha 1 significantly differ less than in boys without insomnia. These findings support the notion of sex differences regarding the association between poor sleep and increased activity of the hypothalamic-pituitary-adrenal axis, and a less adaptable autonomic nervous system in boys in response to an experimental social stress task.


Subject(s)
Sleep Initiation and Maintenance Disorders , Sleep Wake Disorders , Child , Female , Adolescent , Humans , Male , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Sleep/physiology , Stress, Psychological/complications , Electrocardiography , Saliva
5.
J Nippon Med Sch ; 89(5): 500-505, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2117697

ABSTRACT

BACKGROUND: Nasopharyngeal swabs (NPS) are generally used as specimen samples for antigen qualitative tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The principle of the reaction to the antigen protein is the same when saliva is used, and saliva samples were reported to be as accurate as NPS for real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) testing to identify SARS-CoV-2. Unlike NPS collection, self-collected saliva does not expose healthcare workers to the risk of infection. In this study, we evaluated the feasibility of using saliva samples for a SARS-CoV-2 antigen qualitative test (TA2107SA) under development. METHODS: Saliva samples were collected from patients with confirmed or suspected COVID-19 infection and analyzed. The sensitivity, specificity, and concordance index of the antigen qualitative test were calculated using an RT-qPCR test as reference. RESULTS: Saliva samples were collected from 105 patients. The mean interval from onset to specimen collection was 5.7 days. The mean cycle threshold (Ct) value of RT-qPCR was 31.3. The sensitivity, specificity, and concordance index were 70.7%, 100%, and 0.85, respectively. In 33 patients with Ct values <30, the results of both the RT-qPCR and antigen tests were positive. The sensitivity of the saliva-based TA2107SA SARS-CoV-2 antigen qualitative test was slightly lower than that of the conventional antigen qualitative test using NPS samples from the same patient. CONCLUSION: Saliva-based antigen qualitative tests for SARS-CoV-2 are an alternative option during a pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Saliva , Feasibility Studies , Pandemics , Specimen Handling , Sensitivity and Specificity
6.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116049

ABSTRACT

The BNT162b2 vaccine induces neutralizing activity (NA) in serum, but no data are available on whether a third-dose activates specific-immunity within the oral mucosa, representing the primary route of viral-entry. To carefully address this issue, we investigated if such immunity is boosted by SARS-CoV-2-infection; how long it is maintained over-time; and if it protects against the SARS-CoV-2 lineage B.1 (EU) and the emerging Delta and Omicron variants. NA was measured in plasma and saliva samples from: uninfected SARS-CoV-2-Vaccinated (SV), subjects infected prior to vaccination (SIV), and subjects who were infected after the second (SIV2) or the third (SIV3) vaccine dose. Samples were collected immediately before (T0), 15 days (T1), and 90 days (T2) post third-dose administration (SV and SIV), or 15 days post-infection (SIV2 and SIV3). In all the enrolled groups, NA in plasma and saliva: (i) was higher against EU compared to the other variants at all time-points (SV: T0 and T1, EU vs. both Delta and Omicron p < 0.001; T2 p < 0.01) (SIV: T0, EU vs. Delta p < 0.05; EU vs. Omi p < 0.01; T1 and T2 EU vs. Delta p < 0.01; EU vs. Omi p < 0.001); (ii) was boosted by the administration of the third dose; iii) declined over-time, albeit being detectable in almost all subjects at T2. The monitoring of NA over time will be important in clarifying if different NA levels may influence either acquisition or course of infection to properly plan the timing of a fourth vaccine dose administration.


Subject(s)
COVID-19 , Vaccines , Humans , BNT162 Vaccine , Saliva , COVID-19/prevention & control , SARS-CoV-2
7.
CMAJ Open ; 10(4): E981-E987, 2022.
Article in English | MEDLINE | ID: covidwho-2110942

ABSTRACT

BACKGROUND: Accurate and timely testing for SARS-CoV-2 in the pediatric population is crucial to control the COVID-19 pandemic; saliva testing has been proposed as a less invasive alternative to nasopharyngeal swabs. We sought to compare the detection of SARS-CoV-2 using saliva versus nasopharyngeal swab in the pediatric population, and to determine the optimum time of testing for SARS-CoV-2 using saliva. METHODS: We conducted a longitudinal diagnostic study in Ottawa, Canada, from Jan. 19 to Mar. 26, 2021. Children aged 3-17 years were eligible if they exhibited symptoms of COVID-19, had been identified as a high-risk or close contact to someone confirmed positive for SARS-CoV-2 or had travelled outside Canada in the previous 14 days. Participants provided both nasopharyngeal swab and saliva samples. Saliva was collected using a self-collection kit (DNA Genotek, OM-505) or a sponge-based kit (DNA Genotek, ORE-100) if they could not provide a saliva sample into a tube. RESULTS: Among 1580 paired nasopharyngeal and saliva tests, 60 paired samples were positive for SARS-CoV-2. Forty-four (73.3%) were concordant-positive results and 16 (26.6%) were discordant, among which 8 were positive only on nasopharyngeal swab and 8 were positive only on saliva testing. The sensitivity of saliva was 84.6% (95% confidence interval 71.9%-93.1%). INTERPRETATION: Salivary testing for SARS-CoV-2 in the pediatric population is less invasive and shows similar detection of SARS-CoV-2 to nasopharyngeal swabs. It may therefore provide a feasible alternative for diagnosis of SARS-CoV-2 infection in children.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , COVID-19 Testing , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , Saliva
8.
Viruses ; 14(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2110272

ABSTRACT

OBJECTIVES: Torquetenovirus (TTV) and Redondovirus (ReDoV) are the most prevalent viruses found in the human respiratory virome in viral metagenomics studies. A large-scale epidemiological study was performed to investigate their prevalence and loads in saliva samples according to SARS-CoV-2 status. METHODS: Saliva samples from 448 individuals (73% SARS-CoV-2 negative and 27% SARS-CoV-2 positive) aged 23-88 years were tested. SARS-CoV-2 and TTV were determined in saliva by specific qualitative and quantitative real-time PCRs, respectively. A sub-cohort of 377 subjects was additionally tested for the presence and load of ReDoV in saliva, and a different sub-cohort of 120 subjects for which paired saliva and plasma samples were available was tested for TTV and ReDoV viremia at the same timepoints as saliva. RESULTS: TTV in saliva was 72% prevalent in the entire cohort, at a mean DNA load of 4.6 log copies/mL, with no difference regardless of SARS-CoV-2 status. ReDoV was found in saliva from 61% of the entire cohort and was more prevalent in the SARS-CoV-2-negative subgroup (65% vs. 52%, respectively). In saliva, the total mean load of ReDoV was very similar to the one of TTV, with a value of 4.4 log copies/mL. The mean viral loads in subjects infected with a single virus, namely, those infected with TTV or ReDoV alone, was lower than in dually infected samples, and Tukey's multiple-comparison test showed that ReDoV single-infected samples resulted in the only true outlier (p = 0.004). Differently from TTV, ReDoV was not detected in any blood samples. CONCLUSIONS: This study establishes the prevalence and mean value of TTV and ReDoV in saliva samples and demonstrates the existence of differences between these two components of the human virome.


Subject(s)
COVID-19 , DNA Virus Infections , Torque teno virus , Humans , Torque teno virus/genetics , SARS-CoV-2/genetics , Saliva , COVID-19/epidemiology , Viral Load , DNA, Viral/analysis
9.
Front Immunol ; 13: 949787, 2022.
Article in English | MEDLINE | ID: covidwho-2109762

ABSTRACT

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease considered to be triggered by viral infections in a majority of cases. Symptoms overlap largely with those of post-acute sequelae of COVID-19/long-COVID implying common pathogenetic mechanisms. SARS-CoV-2 infection is risk factor for sustained latent virus reactivation that may account for the symptoms of post-viral fatigue syndromes. The aim of this study was first to investigate whether patients with ME/CFS and healthy donors (HDs) differed in their antibody response to mild/asymptomatic SARS-CoV-2 infection. Secondly, to analyze whether COVID-19 imposes latent virus reactivation in the cohorts. Methods: Anti-SARS-CoV-2 antibodies were analyzed in plasma and saliva from non-vaccinated ME/CFS (n=95) and HDs (n=110) using soluble multiplex immunoassay. Reactivation of human herpesviruses 1-6 (HSV1, HSV2, VZV, EBV, CMV, HHV6), and human endogenous retrovirus K (HERV-K) was detected by anti-viral antibody fingerprints in saliva. Results: At 3-6 months after mild/asymptomatic SARS-CoV-2 infection, virus-specific antibodies in saliva were substantially induced signifying a strong reactivation of latent viruses (EBV, HHV6 and HERV-K) in both cohorts. In patients with ME/CFS, antibody responses were significantly stronger, in particular EBV-encoded nuclear antigen-1 (EBNA1) IgG were elevated in patients with ME/CFS, but not in HDs. EBV-VCA IgG was also elevated at baseline prior to SARS-infection in patients compared to HDs. Conclusion: Our results denote an altered and chronically aroused anti-viral profile against latent viruses in ME/CFS. SARS-CoV-2 infection even in its mild/asymptomatic form is a potent trigger for reactivation of latent herpesviruses (EBV, HHV6) and endogenous retroviruses (HERV-K), as detected by antibody fingerprints locally in the oral mucosa (saliva samples). This has not been shown before because the antibody elevation is not detected systemically in the circulation/plasma.


Subject(s)
COVID-19 , Endogenous Retroviruses , Fatigue Syndrome, Chronic , Herpesvirus 6, Human , Humans , Saliva , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin A, Secretory , Immunoglobulin G
10.
PLoS One ; 17(11): e0277367, 2022.
Article in English | MEDLINE | ID: covidwho-2109332

ABSTRACT

The use of a non-invasive fluorescence in situ hybridization (FISH)-based method on saliva for the detection of SARS-CoV-2 is evaluated in a proof-of-concept study and thereafter utilized in an outpatient setting with the Biotrack-MED® analyzer. For a proof-of-concept study, saliva samples were obtained from 28 persons with mild or moderate COVID-19-related symptoms who were tested RT-PCR positive or negative for SARS-CoV-2. In an outpatient setting, 972 individual saliva samples were utilized. All saliva samples were FISHed with a Cy3-labeled SARS-CoV-2-specific DNA probe and were analyzed manually by fluorescence microscopy (proof-of-concept) or with the SARS-CoV-2 application of the Biotrack-MED® analyzer, a semi-autonomous multi-sample filter cytometer. The proof-of-concept study showed a sensitivity of 96.0% and a specificity of 98.5% and is therefore comparable to the RT-PCR analysis of nasopharyngeal swabs. The outpatient setting showed a sensitivity of 90.9% and a specificity of 94.5% and seems therefore a valid assay for the detection of SARS-CoV-2 in individuals that are healthy, mild or moderate symptomatic. In conclusion, the method evaluated in this study, the FISH-based SARS-CoV-2 application of the Biotrack-MED® analyzer, is a sensitive and reliable assay for the detection of SARS-CoV-2 in the general population.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Saliva/chemistry , COVID-19/diagnosis , In Situ Hybridization, Fluorescence , RNA, Viral/genetics , RNA, Viral/analysis , Nasopharynx , Specimen Handling/methods
11.
Indian J Pathol Microbiol ; 65(4): 907-910, 2022.
Article in English | MEDLINE | ID: covidwho-2100023

ABSTRACT

Context: COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging pandemic that is rapidly spreading with more than 114 million confirmed cases and 2.5 million deaths by far. Nasopharyngeal swab (NPS) in VTM has been used as the gold standard respiratory specimen for SARS-CoV-2 reverse-transcriptase real-time PCR (rRT-PCR) tests. But now the virus can also be detected in other clinical specimens like bronchoalveolar lavage, sputum, saliva, throat swab, blood, and stool specimens. Aims: The aim of this study was to determine the diagnostic potential of saliva as a sample in comparison to NPS for detection of SARS-CoV-2 by rRT-PCR. Settings and Design: A cross-sectional study was conducted among 256 paired samples (NPS and Saliva) received in the Department of Microbiology, SMS Medical College, Jaipur over a period of 2 months. Methods and Material: NPS from individuals were collected in a sterile tube containing Viral Transport Medium™. Before swab collection, whole saliva was collected by spitting from the suspected patient into a sterile container. Both were stored at room temperature and transferred to the diagnostic laboratory within four hours of collection where extraction was done using Perkin Elmer chemagic extractor and rRT- PCR was performed using NIV, Pune mastermix. Results: Sensitivity, specificity, PPV, and NPV of RT-PCR for the diagnosis of COVID-19 in saliva were 84.26%, 100%, 100%, and 54.05%, respectively. The accuracy of detection of COVID-19 by saliva samples compared to the routinely used NPS samples (considered as the standard reference) for RT PCR was 86.72%. Conclusions: Our results show that saliva as a reliable sample type for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , COVID-19/diagnosis , Saliva , Cross-Sectional Studies , Nasopharynx , India , Specimen Handling/methods
12.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099853

ABSTRACT

The Omicron variant of SARS-CoV-2 spreads more easily than earlier variants, possibly as a result of a higher viral load in the upper respiratory tract and oral cavity. Hence, we investigated whether the Omicron variant generates a higher viral load than that of the Delta variant in saliva and nasopharynx. Both specimens were collected from 52 Omicron and 17 Delta cases at two time points one week apart and analyzed by qRT-PCR. Viral load was measured as 10 log RNA genome copies per 1000 human cells according to the WHO reference standard. We found that Omicron cases carried a higher viral load and had more sustained viral shedding compared to the Delta cases, especially in the nasopharynx.


Subject(s)
COVID-19 , Saliva , Humans , Nasopharynx/virology , RNA, Viral/genetics , RNA, Viral/analysis , Saliva/virology , SARS-CoV-2/genetics , Viral Load
13.
Front Public Health ; 10: 994770, 2022.
Article in English | MEDLINE | ID: covidwho-2099271

ABSTRACT

Introduction: Being able to independently determine vaccine induced antibody responses by minimal-invasive methods is of great interest to enable a flexible and effective vaccination strategy. This study aimed to evaluate (1) the accuracy, feasibility, usability and acceptability of capillary blood and saliva self-sampling to determine SARS-CoV-2 antibody responses in patients with immune-mediated inflammatory diseases (IMIDs) and health professionals (HP). Methods: IMID patients and HP having received two doses of SARS-CoV-2 vaccines, self-collected capillary blood (Tasso+) and saliva samples. Capillary samples were considered interchangeable with venous blood if three criteria were met: Spearman's correlation coefficient (r) > 0.8, non-significant Wilcoxon signed-rank test (i.e., p > 0.05), and a small bias or 95% of tests within 10% difference through Bland-Altman. Participants completed a survey to investigate self-sampling usability (system usability scale; SUS) and acceptability (net promoter score; NPS). Study personnel monitored correct self-sampling completion and recorded protocol deviations. Results: 60 participants (30 IMID patients and 30 HP) were analyzed. We observed interchangeability for capillary samples with an accuracy of 98.3/100% for Anti-SARS-CoV-2 IgG/IgA antibodies, respectively. Fifty-eight capillary blood samples and all 60 saliva samples were successfully collected within the first attempt. Usability of both self-sampling procedures was rated as excellent, with significantly higher saliva ratings (p < 0.001). Capillary self-sampling was perceived as significantly (p < 0.001) less painful compared to traditional venous blood collection. Participants reported a NPS for capillary and saliva self-sampling of +68% and +63%, respectively. The majority of both groups (73%) preferred capillary self-sampling over professional venous blood collection. Conclusion: Our results indicate that capillary self-sampling is accurate, feasible and preferred over conventional venous blood collection. Implementation could enable easy access, flexible vaccination monitoring, potentially leading to a better protection of vulnerable patient groups. Self-collection of saliva is feasible and safe however more work is needed to determine its application in clinical practice.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/diagnosis , COVID-19/prevention & control , Saliva , Immunogenicity, Vaccine , SARS-CoV-2 , Antibodies, Viral
14.
BMC Med ; 20(1): 406, 2022 10 24.
Article in English | MEDLINE | ID: covidwho-2089197

ABSTRACT

BACKGROUND: The diagnostic accuracy of unsupervised self-testing with rapid antigen diagnostic tests (Ag-RDTs) is mostly unknown. We studied the diagnostic accuracy of a self-performed SARS-CoV-2 saliva and nasal Ag-RDT in the general population. METHODS: This large cross-sectional study consecutively included unselected individuals aged ≥ 16 years presenting for SARS-CoV-2 testing at three public health service test sites. Participants underwent molecular test sampling and received two self-tests (the Hangzhou AllTest Biotech saliva self-test and the SD Biosensor nasal self-test by Roche Diagnostics) to perform themselves at home. Diagnostic accuracy of both self-tests was assessed with molecular testing as reference. RESULTS: Out of 2819 participants, 6.5% had a positive molecular test. Overall sensitivities were 46.7% (39.3-54.2%) for the saliva Ag-RDT and 68.9% (61.6-75.6%) for the nasal Ag-RDT. With a viral load cut-off (≥ 5.2 log10 SARS-CoV-2 E-gene copies/mL) as a proxy of infectiousness, these sensitivities increased to 54.9% (46.4-63.3%) and 83.9% (76.9-89.5%), respectively. For the nasal Ag-RDT, sensitivities were 78.5% (71.1-84.8%) and 22.6% (9.6-41.1%) in those symptomatic and asymptomatic at the time of sampling, which increased to 90.4% (83.8-94.9%) and 38.9% (17.3-64.3%) after applying the viral load cut-off. In those with and without prior SARS-CoV-2 infection, sensitivities were 36.8% (16.3-61.6%) and 72.7% (65.1-79.4%). Specificities were > 99% and > 99%, positive predictive values > 70% and > 90%, and negative predictive values > 95% and > 95%, for the saliva and nasal Ag-RDT, respectively, in most analyses. Most participants considered the self-performing and result interpretation (very) easy for both self-tests. CONCLUSIONS: The Hangzhou AllTest Biotech saliva self Ag-RDT is not reliable for SARS-CoV-2 detection, overall, and in all studied subgroups. The SD Biosensor nasal self Ag-RDT had high sensitivity in individuals with symptoms and in those without prior SARS-CoV-2 infection but low sensitivity in asymptomatic individuals and those with a prior SARS-CoV-2 infection which warrants further investigation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Cross-Sectional Studies , COVID-19 Testing , Saliva , Sensitivity and Specificity , Antigens, Viral
15.
Metabolomics ; 18(11): 81, 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2085518

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is strongly linked to dysregulation of various molecular, cellular, and physiological processes that change abundance of different biomolecules including metabolites that may be ultimately used as biomarkers for disease progression and severity. It is important at early stage to readily distinguish those patients that are likely to progress to moderate and severe stages. OBJECTIVES: This study aimed to investigate the utility of saliva and plasma metabolomic profiles as a potential parameter for risk stratifying COVID-19 patients. METHOD: LC-MS/MS-based untargeted metabolomics were used to profile the changes in saliva and plasma metabolomic profiles of COVID-19 patients with different severities. RESULTS: Saliva and plasma metabolites were screened in 62 COVID-19 patients and 18 non-infected controls. The COVID-19 group included 16 severe, 15 moderate, 16 mild, and 15 asymptomatic cases. Thirty-six differential metabolites were detected in COVID-19 versus control comparisons. SARS-CoV-2 induced metabolic derangement differed with infection severity. The metabolic changes were identified in saliva and plasma, however, saliva showed higher intensity of metabolic changes. Levels of saliva metabolites such as sphingosine and kynurenine were significantly different between COVID-19 infected and non-infected individuals; while linoleic acid and Alpha-ketoisovaleric acid were specifically increased in severe compared to non-severe patients. As expected, the two prognostic biomarkers of C-reactive protein and D-dimer were negatively correlated with sphingosine and 5-Aminolevulinic acid, and positively correlated with L-Tryptophan and L-Kynurenine. CONCLUSION: Saliva disease-specific and severity-specific metabolite could be employed as potential COVID-19 diagnostic and prognostic biomarkers.


Subject(s)
COVID-19 , Humans , Metabolomics , SARS-CoV-2 , Saliva/metabolism , Chromatography, Liquid , Kynurenine/metabolism , Tryptophan/metabolism , C-Reactive Protein/metabolism , Sphingosine , Linoleic Acid/metabolism , Aminolevulinic Acid/metabolism , Tandem Mass Spectrometry , Severity of Illness Index , Biomarkers
16.
Adv Sci (Weinh) ; 9(33): e2204246, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2074902

ABSTRACT

The last pandemic exposed critical gaps in monitoring and mitigating the spread of viral respiratory infections at the point-of-need. A cost-effective multiplexed fluidic device (NFluidEX), as a home-test kit analogous to a glucometer, that uses saliva and blood for parallel quantitative detection of viral infection and body's immune response in an automated manner within 11 min is proposed. The technology integrates a versatile biomimetic receptor based on molecularly imprinted polymers in a core-shell structure with nano gold electrodes, a multiplexed fluidic-impedimetric readout, built-in saliva collection/preparation, and smartphone-enabled data acquisition and interpretation. NFluidEX is validated with Influenza A H1N1 and SARS-CoV-2 (original strain and variants of concern), and achieves low detection limit in saliva and blood for the viral proteins and the anti-receptor binding domain (RBD) Immunoglobulin G (IgG) and Immunoglobulin M (IgM), respectively. It is demonstrated that nanoprotrusions of gold electrodes are essential for the fine templating of antibodies and spike proteins during molecular imprinting, and differentiation of IgG and IgM in whole blood. In the clinical setting, NFluidEX achieves 100% sensitivity and 100% specificity by testing 44 COVID-positive and 25 COVID-negative saliva and blood samples on par with the real-time quantitative polymerase chain reaction (p < 0.001, 95% confidence) and the enzyme-linked immunosorbent assay.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Saliva/chemistry , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M , Immunity
17.
Int J Environ Res Public Health ; 19(19)2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2065944

ABSTRACT

Chronic stress has been associated with a range of health disparities, but examination of occupational stress, especially in the wake of COVID-19, has been minimal for many careers. A novel methodology involving work stress diaries and collection of salivary cortisol was employed to determine correlations between occupations, occupational stressors, and how well these are related to the physiological response to stress exposure, the release of cortisol. While cortisol levels tended to follow typical circadian rhythm based on sampling times, cortisol levels also followed the subjective stress levels listed in the work stress diaries following linear regression analysis using the pooled study population data (p = 0.042). When comparing the stressors between the studied careers, participants who worked in the healthcare industry accounted for one-third of the total participants, but reported nearly half (42%) of the more severe occupational stressors listed in the diaries. Finally, the most commonly listed emotional reactions to exposures listed included feelings of stress, frustration, anger, anxiety, or overwhelm. As the workplace progresses from the pandemic, the opportunity to reduce occupational stress exposures in the workplace is at hand. Companies that work towards minimizing the stress faced by their workforce would have a healthier and more relaxed workforce.


Subject(s)
COVID-19 , Occupational Stress , COVID-19/epidemiology , Circadian Rhythm , Humans , Hydrocortisone/analysis , Occupational Stress/epidemiology , Occupational Stress/psychology , Saliva/chemistry , Stress, Psychological/diagnosis , Stress, Psychological/epidemiology , Workplace/psychology
18.
Biosensors (Basel) ; 12(10)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2065702

ABSTRACT

The spread and resurgence of the SARS-CoV-2 virus (COVID-19 disease) threatens human health and social relations. Prevention of COVID-19 disease partly relies on fabricating low-cost, point-of-care (POC) sensing technology that can rapidly and selectively detect the SARS-CoV-2 virus. We report a colorimetric, paper-based polydiacetylene (PDA) biosensor, designed to detect SARS-CoV-2 spike protein in artificial saliva. Analytical characterizations of the PDA sensor using NMR and FT-IR spectroscopy showed the correct structural elucidation of PCDA-NHS conjugation. The PDA sensor platform containing the N-Hydroxysuccinimide ester of 10, 12-pentacosadiynoic acid (PCDA-NHS) was divided into three experimental PCDA-NHS concentration groups of 10%, 20%, and 30% to optimize the performance of the sensor. The optimal PCDA-NHS molar concentration was determined to be 10%. The PDA sensor works by a color change from blue to red as its colorimetric output when the immobilized antibody binds to the SARS-CoV-2 spike protein in saliva samples. Our results showed that the PDA sensing platform was able to rapidly and qualitatively detect the SARS-CoV-2 spike protein within the concentration range of 1 to 100 ng/mL after four hours of incubation. Further investigation of pH and temperature showed minimal influence on the PDA sensor for the detection of COVID-19 disease. After exposure to the SARS-CoV-2 spike protein, smartphone images of the PDA sensor were used to assess the sensor output by using the red chromatic shift (RCS) of the signal response. These results indicate the potential and practical use of this PDA sensor design for the rapid, colorimetric detection of COVID-19 disease in developing countries with limited access to medical testing.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Colorimetry/methods , Saliva, Artificial , Spectroscopy, Fourier Transform Infrared , Biosensing Techniques/methods , Esters , Saliva
19.
Clin Chim Acta ; 537: 26-37, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2060488

ABSTRACT

BACKGROUND AND AIM: SARS-CoV-2 infection spawns from an asymptomatic condition to a fatal disease. Age, comorbidities, and several blood biomarkers are associated with infection outcome. We searched for biomarkers by untargeted and targeted proteomic analysis of saliva, a source of viral particles and host proteins. METHODS: Saliva samples from 19 asymptomatic and 16 symptomatic SARS-CoV-2 infected subjects, and 20 controls were analyzed by LC-MS/MS for untargeted peptidomic (flow through of 10 kDa filter) and proteomic (trypsin digestion of filter retained proteins) profiling. RESULTS: Peptides from 53 salivary proteins were identified. ADF was detected only in controls, while IL1RA only in infected subjects. PRPs, DSC2, FABP5, his-1, IL1RA, PRH1, STATH, SMR3B, ANXA1, MUC7, ACTN4, IGKV1-33 and TGM3 were significantly different between asymptomatic and symptomatic subjects. Retained proteins were 117, being 11 highly different between asymptomatic and symptomatic (fold change ≥2 or ≤-2). After validation by LC-MS/MS-SRM (selected reaction monitoring analysis), the most significant discriminant proteins at PCA were IL1RA, CYSTB, S100A8, S100A9, CA6, and FABP5. CONCLUSIONS: The differentially abundant proteins involved in innate immunity (S100 proteins), taste (CA6 and cystatins), and viral binding to the host (FABP5), appear to be of interest for use as potential biomarkers and drugs targets.


Subject(s)
COVID-19 , Proteomics , Humans , Chromatography, Liquid , Taste Perception , SARS-CoV-2 , Taste , Tandem Mass Spectrometry , Saliva/metabolism , Biomarkers/metabolism , Immunity, Innate , Fatty Acid-Binding Proteins/metabolism , Transglutaminases/metabolism
20.
PLoS One ; 17(9): e0275201, 2022.
Article in English | MEDLINE | ID: covidwho-2054361

ABSTRACT

Molecular diagnostic testing has played a critical role in the global response to the novel Coronavirus disease (COVID-19) pandemic, since its first outbreak in late 2019. At the inception of the COVID-19 pandemic, nasopharyngeal swab sample analysis for COVID-19 diagnosis using the real-time polymerase chain reaction (RT-PCR) technique was the most widely used. However, due to the high cost and difficulty of sample collection, the number of available sample types for COVID-19 diagnosis is rapidly increasing, as is the COVID-19 diagnostic literature. The use of nasal swabs, saliva, and oral fluids as viable sample options for the effective detection of SARS-CoV-2 has been implemented successfully in different settings since 2020. These alternative sample type provides a plethora of advantages including decreasing the high exposure risk to frontline workers, enhancing the chances of home self-sampling, reducing the cost, and significantly increasing testing capacity. This study sought to ascertain the effectiveness of Saliva samples as an alternative for COVID-19 diagnosis in Nigeria. Demographic data, paired samples of Nasopharyngeal Swab and Drooling Saliva were obtained from 309 consenting individuals aged 8-83 years presenting for COVID-19 testing. All samples were simultaneously assayed for the detection of SARS-CoV-2 RdRp, N, and E genes using the GeneFinder™ COVID-19 Plus RT-PCR test kit. Out of 309 participants, only 299 with valid RT-PCR results comprising 159 (53.2%) males and 140 (46.8%) females were analyzed in this study using the R Statistical package. Among the 299 samples analyzed, 39 (13.0%) had SARS-CoV-2 detected in at least one specimen type. Both swabs and saliva were positive in 20 (51.3%) participants. Ten participants (25.6%) had swab positive/saliva-negative results and 9 participants (23.1%) had saliva positive/swab-negative results. The percentage of positive and negative agreement of the saliva samples with the nasopharyngeal swab were 67% and 97% respectively with positive and negative predictive values as 69% and 96% respectively. The findings indicate that drooling saliva samples have good and comparable diagnostic accuracy to the nasopharyngeal swabs with moderate sensitivities and high specificities.


Subject(s)
COVID-19 , Sialorrhea , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Female , Humans , Male , Nasopharynx , Pandemics , RNA-Dependent RNA Polymerase , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL