Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Dent ; 123: 104203, 2022 08.
Article in English | MEDLINE | ID: covidwho-1895174

ABSTRACT

OBJECTIVE: Using a battery of preclinical tests to support development of a light-based treatment for COVID-19, establish a range of 425 nm light doses that are non-hazardous to the tissues of the oral cavity and assess whether a 425 nm light dose in this non-hazardous range can inactivate SARS-CoV-2 in artificial saliva. METHODS: The potential hazards to oral tissues associated with a range of acute 425 nm light doses were assessed using a battery of four preclinical tests: (1) cytotoxicity, using well-differentiated human large airway and buccal epithelial models; (2) toxicity to commensal oral bacteria, using a panel of model organisms; (3) light-induced histopathological changes, using ex vivo porcine esophageal tissue, and (4) thermal damage, by dosing the oropharynx of intact porcine head specimens. Then, 425 nm light doses established as non-hazardous using these tests were evaluated for their potential to inactivate SARS-CoV-2 in artificial saliva. RESULTS: A dose range was established at which 425 nm light is not cytotoxic in well-differentiated human large airway or buccal epithelial models, is not cytotoxic to a panel of commensal oral bacteria, does not induce histopathological damage in ex vivo porcine esophageal tissue, and does not induce thermal damage to the oropharynx of intact porcine head specimens. Using these tests, no hazards were observed for 425 nm light doses less than 63 J/cm2 delivered at irradiance less than 200 mW/cm2. A non-hazardous 425 nm light dose in this range (30 J/cm2 at 50 mW/cm2) was shown to inactivate SARS-CoV-2 in vitro in artificial saliva. CONCLUSION: Preclinical hazard assessments and SARS-CoV-2 inactivation efficacy testing were combined to guide the development of a 425 nm light-based treatment for COVID-19. CLINICAL SIGNIFICANCE: The process used here to evaluate the potential hazards associated with 425 nm acute light dosing of the oral cavity to treat COVID-19 can be extended to other wavelengths, anatomical targets, and therapeutic applications to accelerate the development of novel photomedicine treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mouth , Oropharynx , Saliva , Saliva, Artificial , Swine
2.
Viruses ; 14(5)2022 05 15.
Article in English | MEDLINE | ID: covidwho-1855822

ABSTRACT

Surface to hand transfer of viruses represents a potential mechanism for human exposure. An experimental process for evaluating the touch transfer of aerosol-deposited material is described based on controlling surface, tribological, and soft matter components of the transfer process. A range of high-touch surfaces were evaluated. Under standardized touch parameters (15 N, 1 s), relative humidity (RH) of the atmosphere around the contact transfer event significantly influenced transfer of material to the finger-pad. At RH < 40%, transfer from all surfaces was <10%. Transfer efficiency increased markedly as RH increased, reaching a maximum of approximately 50%. The quantity of material transferred at specific RHs above 40% was also dependent on roughness of the surface material and the properties of the aerosol-deposited material. Smooth surfaces, such as melamine and stainless steel, generated higher transfer efficiencies compared to those with textured roughness, such as ABS pinseal and KYDEX® plastics. Pooled human saliva was transferred at a lower rate compared to artificial saliva, indicating the role of rheological properties. The artificial saliva data were modeled by non-linear regression and the impact of environmental humidity and temperature were evaluated within a Quantitative Microbial Risk Assessment model using SARS-CoV-2 as an example. This illustrated that the trade-off between transfer efficiency and virus survival may lead to the highest risks of fomite transmissions in indoor environments with higher humidity.


Subject(s)
COVID-19 , Viruses , Aerosols , Humans , Humidity , SARS-CoV-2 , Saliva , Saliva, Artificial
3.
Biosensors (Basel) ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1834709

ABSTRACT

The coronavirus disease (COVID-19) caused by SARS-CoV-2 has caused a global pandemic. To manage and control the spread of the infection, it is crucial to develop and implement technologies for the early identification of infected individuals and rapid informatization in communities. For the realization of such a technology, a widely available and highly usable sensor for sensitive and specific assay of the virus plays a fundamental role. In this study, we developed an optical sensor based on an imprinted photonic crystal film (IPCF) for quick, simple, and cost-effective detection of SARS-CoV-2 spike protein in artificial saliva. Our IPCF sensor enabled label-free and highly sensitive detection with a smartphone-equipped optical setup. The IPCF surface was functionalized with an anti-SARS-CoV-2 spike protein antibody for immunoassay. We evaluated the specificity and sensitivity of the IPCF sensor for quantitative detection of the spike protein in artificial saliva using simple reflectometry with a spectrometer-equipped optical setup. Specific and quantitative detection of the spike protein was successfully achieved, with a low detection limit of 429 fg/mL. In the demonstration of reflectometric detection with a smartphone-equipped setup, the sensitivity was comparable with that with a spectrometer-equipped setup. The test result is returned immediately and can be saved to cloud storage. In addition, it costs less than USD 1 for one IPCF to be used for diagnosis. Thus, the developed IPCF has the potential to realize a widely available and highly usable sensor.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , SARS-CoV-2 , Saliva, Artificial , Smartphone , Spike Glycoprotein, Coronavirus/chemistry
4.
Talanta ; 244: 123422, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1763988

ABSTRACT

In this present study, an amperometric immunosensor was developed based on disposable screen-printed carbon electrode (SPCE) for specific and sensitive detection of SARS-CoV-2 S1 protein. Anti-SARS-CoV-2 S1 monoclonal antibody was firstly immobilized onto the electrode surface. Then, the sandwich complex was formed by addition of S1 protein, secondary antibody and HRP-IgG, respectively. Chronoamperometry measurements were done in the presence of TMB mediator and the detection of SARS-CoV-2 S1 protein was performed by using 10 µL sample. The limit of detection (LOD) was found to be 0.19 ng/mL (equals to 24.7 amol in 10 µL sample) in the linear range of 0.5-10 ng/mL obtained in buffer medium. The applicability of this assay was investigated in the linear range of 0.5-3 ng/mL S1 protein in artificial saliva medium with the LOD as 0.13 ng/mL (equals to 16.9 amol in 10 µL sample). The selectivity study was examined in the presence of Hemagglutinin antigen (HA) in both mediums; buffer and artificial saliva while resulting with the successful discrimination between S1 protein and HA. The one of ultimate goals of our study is to present the possible implementation of this assay to point of care (POC) analysis. Under this aim, this assay was performed in combination with a portable device that is the commercial electrochemical analyzer. Amperometric detection of S1 protein in the range of 0.5-5 ng/mL was also successfully performed in artificial saliva medium with a resulting LOD as 0.15 ng/mL (equals to 19.5 amol in 10 µL sample). In addition, a selectivity study was similarly carried out by portable device.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , Biosensing Techniques/methods , COVID-19/diagnosis , Humans , Immunoassay/methods , SARS-CoV-2 , Saliva, Artificial
5.
Appl Environ Microbiol ; 88(7): e0255221, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1741573

ABSTRACT

The persistence of Phi6 (Φ6) bacteriophage on surfaces commonly encountered in consumer-facing environments was evaluated. Φ6 has been utilized as a surrogate for enveloped viruses, including SARS-CoV-2-the causative agent of COVID-19-due to structural similarities, biosafety level 1 (BSL-1) status, and ease of use. Φ6 persistence on fomites was evaluated by characterizing the impact of the inoculum matrix (artificial saliva, phosphate-buffered saline [PBS], tripartite), inoculum level (low and high), and surface type (nonporous-aluminum, stainless steel, plastic, touchscreen, vinyl; porous-wood). Φ6 was inoculated onto surfaces at low and high inoculum levels for each inoculum matrix and incubated (20.54 ± 0.48°C) for up to 168 h. Φ6 was eluted from the surface and quantified via the double agar overlay assay to determine virus survival over time. For nonporous surfaces inoculated with artificial saliva and PBS, significantly higher D values were observed with high inoculum application according to the 95% confidence intervals. In artificial saliva, D values ranged from 1.00 to 1.35 h at a low inoculum and 4.44 to 7.05 h at a high inoculum across inoculation matrices and surfaces. D values for Φ6, regardless of the inoculum level, were significantly higher in tripartite than in artificial saliva and PBS for nonporous surfaces. In contrast with artificial saliva or PBS, D values in tripartite at low inoculum (D values ranging from 45.8 to 72.8 h) were greater than those at high inoculum (D values ranging from 26.4 to 45.5 h) on nonporous surfaces. This study characterized the impact of the inoculum matrix, inoculum level, and surface type on Φ6 survival on various surfaces relevant to fomite transmission in public settings. IMPORTANCE An important consideration in virus contact transmission is the transfer rate between hands and surfaces, which is driven by several factors, including virus persistence on inanimate surfaces. This research characterized Φ6 persistence on surfaces commonly encountered in public settings based on various factors. The inoculum matrix, which simulates the route of transmission, can impact virus persistence, and three separate matrices were evaluated in this study to determine the impact on Φ6 persistence over time. The number of microorganisms has also been suggested to impact persistence, which was evaluated here to simulate real-world contamination scenarios on six surface types. Results from this study will guide future research utilizing Φ6 or other surrogates for enveloped viruses of public health concern.


Subject(s)
Bacteriophages , COVID-19 , Viruses , Fomites , Humans , SARS-CoV-2 , Saliva, Artificial
6.
Int Orthod ; 19(4): 685-688, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472124

ABSTRACT

OBJECTIVE: In orthodontic patients using any chemical substances in oral environment could change the elastomeric properties of their appliances. Since the beginning of the SARS-CoV-2 pandemic, efforts have been devoted to explore methods of prevention including the use of antiviral mouthwashes. This study aimed to investigate the effects of Povidone Iodine (PVP-I) and two other disinfecting solutions on the mechanical properties of orthodontic elastomeric ligatures. MATERIALS AND METHODS: In this study, 130 elastomeric ligatures in five groups (three test groups and two control groups) were examined in laboratory conditions for a period of 28 days. In the control group, specimens were kept dry in a dark environment while all other ligatures were stored in artificial saliva. Elastomeric ligatures were immersed into PVP-I solution (1%) Chlorhexidine (0.02%), and hydrogen peroxide (5%) for one minute each day in three time intervals of one day, 7 days and 28 days. Next, the maximum tensile strength of elastomeric ligatures was tested by a universal testing machine (CN 1174, Germany). RESULTS: The results showed that the tensile strength of elastomeric ligatures was significantly decreased in all three test groups after 28 days (p-value<0.05). However, the difference between groups was not statistically significant. Between-subject ANOVA test showed that there were significant correlations between the time of exposure and type of disinfecting solutions. CONCLUSIONS: PVP-I has comparable effects on elastomeric ligatures as artificial saliva, chlorhexidine, and hydrogen peroxide.


Subject(s)
Chlorhexidine/pharmacology , Hydrogen Peroxide/pharmacology , Orthodontic Appliances , Povidone-Iodine/pharmacology , Tensile Strength/drug effects , COVID-19 , Elastomers , Humans , Materials Testing , SARS-CoV-2 , Saliva, Artificial
7.
Emerg Microbes Infect ; 9(1): 1415-1417, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-526750

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, may be transmitted via airborne droplets or contact with surfaces onto which droplets have deposited. In this study, the ability of SARS-CoV-2 to survive in the dark, at two different relative humidity values and within artificial saliva, a clinically relevant matrix, was investigated. SARS-CoV-2 was found to be stable, in the dark, in a dynamic small particle aerosol under the four experimental conditions we tested and viable virus could still be detected after 90 minutes. The decay rate and half-life was determined and decay rates ranged from 0.4 to 2.27 % per minute and the half lives ranged from 30 to 177 minutes for the different conditions. This information can be used for advice and modelling and potential mitigation strategies.


Subject(s)
Aerosols/chemistry , Betacoronavirus/growth & development , Coronavirus Infections/virology , Culture Media/chemistry , Pneumonia, Viral/virology , Saliva, Artificial/chemistry , Salvia/virology , Air Microbiology , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/radiation effects , COVID-19 , Coronavirus Infections/transmission , Darkness , Humans , Humidity , Kinetics , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL