Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Rep ; 13(1): 2487, 2023 02 13.
Article in English | MEDLINE | ID: covidwho-2242580

ABSTRACT

Mask-wearing is still recommended owing to the continuing impact of the COVID-19 pandemic. Within the closed chamber created by the mask, people are increasingly self-aware of their oral malodor. In this prospective and cross-sectional study, we aimed to measure volatile sulfide compound (VSC) levels in patients with halitosis and investigate the oral microbiome profile on the inner surface of their KF94 masks. We also investigated which oral microbiota increases VSC levels and whether the oral microbiomes of oral saliva and mask are correlated. A total of 50 subjects (41 women, average age 38.12 ± 12.58 years old) were included in the study, 25 healthy subjects and 25 patients with halitosis who wore masks for more than 3 h. The dominant bacterial species, bacterial profile, and Shannon diversity index of whole unstimulated saliva and the inner surface of the mask were investigated. The bacterial 16S ribosomal RNA genes of the major oral bacterial species were analyzed using real-time PCR. Gas chromatography was used to measure hydrogen sulfide (H2S) and methyl mercaptan (CH3SH), which are representative VSCs. The total bacterial DNA copy number was significantly higher in the saliva sample than in the mask sample (p < 0.001), and the average value was 276 times greater. Shannon diversity index was also significantly higher in saliva than in the inner surface of the mask (2.62 ± 0.81 vs. 1.15 ± 1.52, p < 0.001). The most common Gram-negative and Gram-positive species in the masks were Porphyromonas gingivalis (Pg) and Lactobacillus casei (Lc), respectively. The bacterial species with significant positive correlations between saliva and mask samples were Prevotella intermedia (Pi) (r = 0.324, p = 0.022), Eikenella corrodens (r = 0.309, p = 0.029), Lc (r = 0.293, p = 0.039), and Parvimonas micra (Pm) (r = 0.366, p = 0.009). The mean value of CH3SH was significantly higher in the halitosis group than in the non-halitosis group (17.84 ± 29.00 vs. 3.84 ± 10.57 ppb, p = 0.031). In the halitosis group, the DNA copy numbers and VSC levels showed highly positive correlation coefficients in the order Pg, Treponema denticola (Td), Tannerella forsythia (Tf), Pi, and Prevotella nigrescens (Pn) (all p < 0.05). Regarding bacterial profiles of the mask, Td was strongly correlated with CH3SH (r = 0.414, p = 0.040) and total VSCs (r = 0.374, p = 0.033) only in halitosis group. Mask-wearing time was strongly correlated with total VSCs, H2S, and CH3SH (all r > 0.8, p < 0.001). Oral bacteria, whose association with halitosis has been identified, increased VSC levels in mask-wearing subjects during the COVID-19 pandemic, particularly the number of Gram-negative anaerobes such as Pg and Td. Mask-wearing time was a major factor in increasing VSC levels. The study results suggest that people with halitosis could control these Gram-negative bacteria by improving oral hygiene and regularly changing masks.


Subject(s)
COVID-19 , Halitosis , Hydrogen Sulfide , Humans , Female , Adult , Middle Aged , Sulfur Compounds , Cross-Sectional Studies , Pandemics , Prospective Studies , Sulfides/analysis , Porphyromonas gingivalis , Hydrogen Sulfide/analysis , Saliva/chemistry , Treponema denticola
2.
PLoS One ; 17(11): e0277367, 2022.
Article in English | MEDLINE | ID: covidwho-2109332

ABSTRACT

The use of a non-invasive fluorescence in situ hybridization (FISH)-based method on saliva for the detection of SARS-CoV-2 is evaluated in a proof-of-concept study and thereafter utilized in an outpatient setting with the Biotrack-MED® analyzer. For a proof-of-concept study, saliva samples were obtained from 28 persons with mild or moderate COVID-19-related symptoms who were tested RT-PCR positive or negative for SARS-CoV-2. In an outpatient setting, 972 individual saliva samples were utilized. All saliva samples were FISHed with a Cy3-labeled SARS-CoV-2-specific DNA probe and were analyzed manually by fluorescence microscopy (proof-of-concept) or with the SARS-CoV-2 application of the Biotrack-MED® analyzer, a semi-autonomous multi-sample filter cytometer. The proof-of-concept study showed a sensitivity of 96.0% and a specificity of 98.5% and is therefore comparable to the RT-PCR analysis of nasopharyngeal swabs. The outpatient setting showed a sensitivity of 90.9% and a specificity of 94.5% and seems therefore a valid assay for the detection of SARS-CoV-2 in individuals that are healthy, mild or moderate symptomatic. In conclusion, the method evaluated in this study, the FISH-based SARS-CoV-2 application of the Biotrack-MED® analyzer, is a sensitive and reliable assay for the detection of SARS-CoV-2 in the general population.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Saliva/chemistry , COVID-19/diagnosis , In Situ Hybridization, Fluorescence , RNA, Viral/genetics , RNA, Viral/analysis , Nasopharynx , Specimen Handling/methods
3.
Adv Sci (Weinh) ; 9(33): e2204246, 2022 11.
Article in English | MEDLINE | ID: covidwho-2074902

ABSTRACT

The last pandemic exposed critical gaps in monitoring and mitigating the spread of viral respiratory infections at the point-of-need. A cost-effective multiplexed fluidic device (NFluidEX), as a home-test kit analogous to a glucometer, that uses saliva and blood for parallel quantitative detection of viral infection and body's immune response in an automated manner within 11 min is proposed. The technology integrates a versatile biomimetic receptor based on molecularly imprinted polymers in a core-shell structure with nano gold electrodes, a multiplexed fluidic-impedimetric readout, built-in saliva collection/preparation, and smartphone-enabled data acquisition and interpretation. NFluidEX is validated with Influenza A H1N1 and SARS-CoV-2 (original strain and variants of concern), and achieves low detection limit in saliva and blood for the viral proteins and the anti-receptor binding domain (RBD) Immunoglobulin G (IgG) and Immunoglobulin M (IgM), respectively. It is demonstrated that nanoprotrusions of gold electrodes are essential for the fine templating of antibodies and spike proteins during molecular imprinting, and differentiation of IgG and IgM in whole blood. In the clinical setting, NFluidEX achieves 100% sensitivity and 100% specificity by testing 44 COVID-positive and 25 COVID-negative saliva and blood samples on par with the real-time quantitative polymerase chain reaction (p < 0.001, 95% confidence) and the enzyme-linked immunosorbent assay.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Saliva/chemistry , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M , Immunity
4.
Environ Res ; 216(Pt 1): 114443, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2049189

ABSTRACT

INTRODUCTION: The Angiotensin-Converting Enzyme 2 (ACE2) is the main receptor of the SARS-CoV-2. There is contradictory evidence on how the exposure to nicotine may module the concentration of soluble ACE2 (sACE2). The aim of this study was to assess the association between nicotine and sACE2 concentrations in saliva samples. METHODS: Pooled analysis performed with data retrieved from two studies (n = 634 and n = 302). Geometric mean (GM) concentrations of sACE2, both total and relative to the total amount of protein in the sample, were compared according to sociodemographic variables and variables associated to nicotine. Multivariable linear regression models were fitted to explore the associations of sACE2 with nicotine adjusting for sex, age and body mass index. Spearman's rank-correlation coefficients were estimated between the concentrations of nicotine and cotinine, and pack-years, the concentration of relative sACE2 and the isoforms of sACE2. RESULTS: We observed a significant increase of 0.108‰ and 0.087 ng/µl in the relative and absolute salivary sACE2 GM concentrations, respectively, between the lowest and highest nicotine levels. Similar results were observed for cotinine. These associations did not change in the multivariable linear models. There was a low correlation of nicotine and cotinine concentration with the concentration of relative salivary sACE2 (rs = 0.153 and rs = 0.132, respectively), pack-years (rs = 0.222 and rs = 0.235, respectively) and with the concentration of isoform 40 KDa (rs = 0.193 and rs = 0.140, respectively). CONCLUSION: Salivary nicotine concentration seems to be limitedly associated with the concentration of sACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Nicotine , Saliva , Humans , Angiotensin-Converting Enzyme 2/analysis , Cotinine/analysis , Nicotine/analysis , Saliva/chemistry
5.
Arch Pathol Lab Med ; 146(12): 1435-1440, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2025233

ABSTRACT

CONTEXT.­: The use of saliva samples for diagnosis of SARS-CoV-2 infection offers several advantages, including ease of sample collection, feasibility of self-collection, and minimization of medical staff exposure to infection. The emergence of new SARS-CoV-2 variants has had an impact on the viral load of specimens and the results of real-time reverse transcription-polymerase chain reaction (rRT-PCR). OBJECTIVE.­: To compare nasopharyngeal swab and saliva samples for the diagnosis of SARS-CoV-2 using rRT-PCR. DESIGN.­: In this study, participants were recruited prospectively, and paired nasopharyngeal swab and saliva samples were collected simultaneously from each participant. After adding universal transport medium, RNA was extracted in an identical manner for both sample types, and samples were tested using rRT-PCR. In addition, samples with positive results were tested for SARS-CoV-2 variants. RESULTS.­: Of the 338 paired samples, 100 nasopharyngeal swab and 101 saliva samples tested positive for SARS-CoV-2. The rRT-PCR results of the saliva and nasopharyngeal swab samples showed a positive percent agreement of 95.0% (95% CI, 88.7%-98.4%), a negative percent agreement of 97.9% (95% CI, 95.2%-99.3%), and an overall percent agreement of 96.8% (95% CI, 94.3%-98.4%). SARS-CoV-2 was detected in the saliva samples of 6 participants with negative nasopharyngeal sample results. In addition, the sensitivity of saliva samples was similar to that of nasopharyngeal samples for detecting various SARS-CoV-2 variants, including the Omicron variant. CONCLUSIONS.­: Saliva samples can be used as an alternative to nasopharyngeal samples for convenient and effective detection of various SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Saliva/chemistry , COVID-19/diagnosis , Specimen Handling/methods , Nasopharynx , RNA, Viral/genetics , RNA, Viral/analysis
6.
Allergy Asthma Proc ; 43(5): 419-430, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2022489

ABSTRACT

Background: Secretory immunoglobulin A (sIgA) plays an important role in antiviral protective immunity. Although salivary testing has been used for many viral infections, including severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS), its use has not yet been well established with the SARS coronavirus 2 (SARS-CoV-2). Quantification of salivary IgA and IgG antibodies can elucidate mucosal and systemic immune responses after natural infection or vaccination. Here, we report the development and validation of a rapid enzyme-linked immunosorbent assay (ELISA) for anti-SARS-CoV-2 salivary IgA and serum IgG antibodies, and present quantitative results for immunized subjects both prior to or following COVID-19 infections. Objective: Total and serum SARS-CoV-2 spike-specific IgG responses were compared with salivary spike-specific IgA and IgG responses in samples obtained from patients recently infected with SARS-CoV-2 and from subjects recently immunized with COVID-19 vaccines. Methods: A total of 52 paired saliva and serum samples were collected from 26 study participants: 7 subjects after COVID-19 infection and 19 subjects who were uninfected. The ELISA results from these samples were compared with five prepandemic control serum samples. Total IgG and SARS-CoV-2 spike-specific IgG in the serum samples from the subjects who were infected and vaccinated were also measured in a commercial laboratory with an enzyme immunoassay. Results: A wide variation in antibody responses was seen in salivary and serum samples measured by both methods. Three groups of serum total and IgG spike-specific SARS-CoV-2 antibody responses were observed: (1) low, (2) intermediate, and (3) high antibody responders. A correlational analysis of salivary IgA (sIgA) responses with serum IgG concentrations showed a statistical correlation in the low and intermediate antibody responder groups but not in the high group (which we believe was a result of saturation). Conclusion: These preliminary findings suggest measuring salivary and serum IgG and IgA merit further investigation as markers of current or recent SARS-CoV-2 infections.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin A, Secretory , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Saliva/chemistry , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 904-909, 2022 07.
Article in English | MEDLINE | ID: covidwho-2018734

ABSTRACT

The need for oral health monitoring Point of Care (PoC) systems is ever growing. This is effectively highlighted by the ongoing COVID-19 pandemic where the lack of rapid PoC testing has placed an unsustainable burden on centralized laboratory testing. Urgent development has furthered pathogenic nucleic acid and antibody detection in oral samples throat swabs, but without corresponding advancements in biochemical monitoring through oral biosensing. We have recently reported two novel biosensor technologies for detection of high impact hormones: cortisol in saliva by organic electrolyte gated FETs (OEGFETs), and 8-isoprostane in exhaled breath condensate (EBC) using molecularly imprinted electroimpedance spectroscopy biosensors (MIP EIS). In this work, we report a first stage integration of the two biosensors - previously bench-top proven - with a miniaturized semi-hermetically sealed soft-fluidic enclosure, onto a low-power (<300 mW) customized printed circuit board. Our findings established comparable detection thresholds for the miniaturized board-based configuration and a lab-based test setup, and their ability to characterize, calibrate, and operate these small footprint biosensors. Testing with the 8-isoprostane EBC MIP EIS biosensors showed the system-on-board had an effective frequency range of 100-100kHz, comparable to lab bench impedance analyzers. Despite internal impedance increases of 210%, the expected data features are present in the impedance graphs collected with the PCB. The system-on-board experiments using OEGFET aptasensor showed a predictable behavior and comparable sensor detection range and resolution using unadulterated supernatant and serial dilutions of cortisol over a range of 273 µM to 2.73pM. The portable, multi-analyte oral biosensor is a promising prototype for future packaging and clinical validation.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Humans , Hydrocortisone/analysis , Pandemics , Point-of-Care Systems , Saliva/chemistry
8.
PLoS One ; 17(8): e0272971, 2022.
Article in English | MEDLINE | ID: covidwho-1993506

ABSTRACT

Viability of saliva samples stored for longer than 28 days has not been reported in the literature. The COVID-19 pandemic has spawned new research evaluating various sample types, thus large biobanks have been started. Residual saliva samples from university student surveillance testing were retested on SalivaDirect and compared with original RT-PCR (cycle threshold values) and quantitative antigen values for each month in storage. We conclude that saliva samples stored at -80°C are still viable in detecting SARS-CoV-2 after 12 months of storage, establishing the validity of these samples for future testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , Saliva/chemistry , Specimen Handling
9.
Sci Rep ; 12(1): 11553, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921718

ABSTRACT

Polymerase chain reaction (PCR) has proven to be the gold-standard for SARS-CoV-2 detection in clinical settings. The most common approaches rely on nasopharyngeal specimens obtained from swabs, followed by RNA extraction, reverse transcription and quantitative PCR. Although swab-based PCR is sensitive, swabbing is invasive and unpleasant to administer, reducing patient compliance for regular testing and resulting in an increased risk of improper sampling. To overcome these obstacles, we developed a non-invasive one-step RT-qPCR assay performed directly on saliva specimens. The University of Nottingham Asymptomatic Testing Service protocol simplifies sample collection and bypasses the need for RNA extraction, or additives, thus helping to encourage more regular testing and reducing processing time and costs. We have evaluated the assay against the performance criteria specified by the UK regulatory bodies and attained accreditation (BS EN ISO/IEC 17,025:2017) for SARS-CoV-2 diagnostic testing by the United Kingdom Accreditation Service. We observed a sensitivity of 1 viral copy per microlitre of saliva, and demonstrated a concordance of > 99.4% between our results and those of other accredited testing facilities. We concluded that saliva is a stable medium that allows for a highly precise, repeatable, and robust testing method.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Nasopharynx , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/chemistry , Sensitivity and Specificity , Specimen Handling/methods
10.
Clin Lab ; 68(6)2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1893323

ABSTRACT

BACKGROUND: Rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using saliva samples has emerged as a preferred technique since sample collection is easy and noninvasive. In addition, several commercial high-throughput PCR kits that do not require RNA extraction/purification have been developed and are now available for testing saliva samples. However, an optimal protocol for SARS-CoV-2 RT-PCR testing of saliva samples using the RNA extraction/purification-free kits has not yet been established. The aim of this study was to establish optimal preanalytical conditions, including saliva sample collection, storage, and dilution for RNA extraction/purification-free RT-PCR (direct RT-PCR). METHODS: Patients suspected with COVID-19 from March 02 to August 31, 2020, were enrolled in this study. A total of 248 samples, including 43 nasopharyngeal swabs and 205 saliva samples, were collected from 66 patients (37 outpatients and 29 inpatients) and tested using the 2019 Novel Coronavirus Detection Kit (nCoV-DK, Shimadzu Corporation, Kyoto, Japan). RESULTS: The detection results obtained using nasopharyngeal swabs and saliva samples matched 100%. The sampling time, i.e., either awakening time or post-breakfast, had no significant effect on the viral load of the saliva samples. Although saliva samples are routinely diluted to reduce viscosity, we observed that dilution negatively affected PCR sensitivity. Saliva samples could be stored at room temperature (25°C) for 24 hours or at 4°C for up to 48 hours. CONCLUSIONS: This study demonstrated the appropriate conditions of saliva sample collection, processing, and storage, and indicated that the nCoV-DK is applicable to saliva samples, making the diagnosis method simple and safe.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Feasibility Studies , Humans , Meals , Nasopharynx , RNA , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , Saliva/chemistry , Specimen Handling/methods , Temperature
11.
PLoS One ; 17(6): e0268388, 2022.
Article in English | MEDLINE | ID: covidwho-1892317

ABSTRACT

BACKGROUND: Adults are being vaccinated against SARS-CoV-2 worldwide, but the longitudinal protection of these vaccines is uncertain, given the ongoing appearance of SARS-CoV-2 variants. Children remain largely unvaccinated and are susceptible to infection, with studies reporting that they actively transmit the virus even when asymptomatic, thus affecting the community. METHODS: We investigated if saliva is an effective sample for detecting SARS-CoV-2 RNA and antibodies in children, and associated viral RNA levels to infectivity. For that, we used a saliva-based SARS-CoV-2 RT-qPCR test, preceded or not by RNA extraction, in 85 children aged 10 years and under, admitted to the hospital regardless of COVID-19 symptomatology. Amongst these, 29 (63.0%) presented at least one COVID-19 symptom, 46 (54.1%) were positive for SARS-CoV-2 infection, 28 (32.9%) were under the age of 1, and the mean (SD) age was 3.8 (3.4) years. Saliva samples were collected up to 48 h after a nasopharyngeal swab-RT-qPCR test. RESULTS: In children aged 10 years and under, the sensitivity, specificity, and accuracy of saliva-RT-qPCR tests compared to NP swab-RT-qPCR were, respectively, 84.8% (71.8%-92.4%), 100% (91.0%-100%), and 91.8% (84.0%-96.6%) with RNA extraction, and 81.8% (68.0%-90.5%), 100% (91.0%-100%), and 90.4% (82.1%-95.0%) without RNA extraction. Rescue of infectious particles from saliva was limited to CT values below 26. In addition, we found significant IgM positive responses to SARS-CoV-2 in children positive for SARS-CoV-2 by NP swab and negative by saliva compared to other groups, indicating late infection onset (>7-10 days). CONCLUSIONS: Saliva is a suitable sample type for diagnosing children aged 10 years and under, including infants aged <1 year, even bypassing RNA extraction methods. Importantly, the detected viral RNA levels were significantly above the infectivity threshold in several samples. Further investigation is required to correlate SARS-CoV-2 RNA levels to viral transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19 Testing , Child , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques , Nasopharynx , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/chemistry , Specimen Handling/methods
12.
Clin Chem Lab Med ; 60(5): 771-777, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1690676

ABSTRACT

OBJECTIVES: Widespread SARS-CoV-2 testing is invaluable for identifying asymptomatic/pre-symptomatic individuals. There remains a technological gap for highly reliable, easy, and quick SARS-CoV-2 diagnostic tests suitable for frequent mass testing. Compared to nasopharyngeal (NP) swab-based tests, saliva-based methods are attractive due to easier and safer sampling. Current saliva-based SARS-CoV-2 rapid antigen tests (RATs) are hindered by limited analytical sensitivity. Here, we report one of the first ultrasensitive, saliva-based SARS-CoV-2 antigen assays with an analytical sensitivity of <0.32 pg/mL, corresponding to four viral RNA copies/µL, which is comparable to that of PCR-based tests. METHODS: Using the novel electrochemiluminescence (ECL)-based immunoassay, we measured the SARS-CoV-2 nucleocapsid (N) antigen concentration in 105 salivas, obtained from non-COVID-19 and COVID-19 patients. We then verified the results with a second, independent cohort of 689 patients (3.8% SARS-CoV-2 positivity rate). We also compared our method with a widely used point-of-care rapid test. RESULTS: In the first cohort, at 100% specificity, the sensitivity was 92%. Our assay correctly identified samples with viral loads up to 35 CT cycles by saliva-based PCR. Paired NP swab-based PCR results were obtained for 86 cases. Our assay showed high concordance with saliva-based and NP swab-based PCR in samples with negative (<0.32 pg/mL) and strongly positive (>2 pg/mL) N antigen concentrations. In the second cohort, at 100% specificity, sensitivity was also 92%. Our assay is about 700-fold more sensitive than the Abbott Panbio Rapid Test. CONCLUSIONS: We demonstrated the ultrasensitivity and specificity assay and its concordance with PCR. This novel assay is especially valuable when compliance to frequent swabbing may be problematic.


Subject(s)
COVID-19 , Saliva , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , SARS-CoV-2 , Saliva/chemistry , Sensitivity and Specificity
13.
Biosensors (Basel) ; 11(1)2020 Dec 31.
Article in English | MEDLINE | ID: covidwho-1006988

ABSTRACT

The United States Centers for Disease Control and Prevention considers saliva contact the lead transmission means of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). Saliva droplets or aerosols expelled by heavy breathing, talking, sneezing, and coughing may carry this virus. People in close distance may be exposed directly or indirectly to these droplets, especially those droplets that fall on surrounding surfaces and people may end up contracting COVID-19 after touching the mucosa tissue on their faces. It is of great interest to quickly and effectively detect the presence of SARS-CoV-2 in an environment, but the existing methods only work in laboratory settings, to the best of our knowledge. However, it may be possible to detect the presence of saliva in the environment and proceed with prevention measures. However, detecting saliva itself has not been documented in the literature. On the other hand, many sensors that detect different organic components in saliva to monitor a person's health and diagnose different diseases that range from diabetes to dental health have been proposed and they may be used to detect the presence of saliva. This paper surveys sensors that detect organic and inorganic components of human saliva. Humidity sensors are also considered in the detection of saliva because a large portion of saliva is water. Moreover, sensors that detect infectious viruses are also included as they may also be embedded into saliva sensors for a confirmation of the virus' presence. A classification of sensors by their working principle and the substance they detect is presented. This comparison lists their specifications, sample size, and sensitivity. Indications of which sensors are portable and suitable for field application are presented. This paper also discusses future research and challenges that must be resolved to realize practical saliva sensors. Such sensors may help minimize the spread of not only COVID-19 but also other infectious diseases.


Subject(s)
Biological Monitoring/instrumentation , COVID-19/prevention & control , SARS-CoV-2/isolation & purification , Saliva/chemistry , Saliva/virology , Biological Monitoring/methods , COVID-19/enzymology , COVID-19/etiology , COVID-19/immunology , Communicable Diseases/enzymology , Communicable Diseases/etiology , Communicable Diseases/immunology , Communicable Diseases/virology , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Saliva/enzymology , Saliva/immunology , Viruses/chemistry , Viruses/enzymology , Viruses/immunology , Viruses/isolation & purification
14.
Biosens Bioelectron ; 172: 112750, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-893621

ABSTRACT

Tremendous research and commercialization efforts around the world are focused on developing novel wearable electrochemical biosensors that can noninvasively and continuously screen for biochemical markers in body fluids for the prognosis, diagnosis and management of diseases, as well as the monitoring of fitness. Researchers in North America are leading the development of innovative wearable platforms that can comfortably comply to the human body and efficiently sample fluids such as sweat, interstitial fluids, tear and saliva for the electrochemical detection of biomarkers through various sensing approaches such as potentiometric ion selective electrodes and amperometric enzymatic sensors. We start this review with a historical timeline overviewing the major milestones in the development of wearable electrochemical sensors by North American institutions. We then describe how such research efforts have led to pioneering developments and are driving the advancement and commercialization of wearable electrochemical sensors: from minimally invasive continuous glucose monitors for chronic disease management to non-invasive sweat electrolyte sensors for dehydration monitoring in fitness applications. While many countries across the globe have contributed significantly to this rapidly emerging field, their contributions are beyond the scope of this review. Furthermore, we share our perspective on the promising future of wearable electrochemical sensors in applications spanning from remote and personalized healthcare to wellness.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , COVID-19/diagnosis , Wearable Electronic Devices , Biomarkers/analysis , Biosensing Techniques/history , Biosensing Techniques/trends , Blood Glucose/analysis , Blood Glucose Self-Monitoring/instrumentation , COVID-19 Testing/trends , Electrochemical Techniques/history , Electrochemical Techniques/instrumentation , Epidermis/chemistry , Equipment Design/history , Extracellular Fluid/chemistry , History, 21st Century , Humans , North America , Potentiometry/instrumentation , Saliva/chemistry , Sweat/chemistry , Tears/chemistry , Wearable Electronic Devices/history , Wearable Electronic Devices/trends
15.
Int J Public Health ; 65(9): 1549-1557, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-871428

ABSTRACT

OBJECTIVES: This longitudinal cohort study aims to assess the extent and patterns of seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in school-attending children, and their parents and school personnel. It will examine risk factors for infection, the relationship between seropositivity and symptoms, and temporal persistence of antibodies. METHODS: The study (Ciao Corona) will enroll a regionally representative, random sample of schools in the canton of Zurich, where 18% of the Swiss population live. Children aged 5-16 years, attending primary and secondary schools, and their parents and school personnel are invited. Venous blood and saliva samples are collected for serological testing in June/July 2020, in October/November 2020, and in March/April 2021. Bi-monthly questionnaires will cover SARS-CoV-2 symptoms and tests, health, preventive behavior, and lifestyle information. Hierarchical Bayesian logistic regression models will account for sensitivity and specificity of the serological tests in the analyses and complex sampling structure, i.e., clustering within classes and schools. RESULTS AND CONCLUSIONS: This unique school-based study will allow describing temporal trends of immunity, evaluate effects of preventive measures and will inform goal-oriented policy decisions during subsequent outbreaks. Trial registration ClinicalTrials.gov Identifier: NCT04448717, registered June 26, 2020. https://clinicaltrials.gov/ct2/show/NCT04448717 .


Subject(s)
COVID-19/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Schools , Adolescent , Bayes Theorem , Child , Child, Preschool , Humans , Longitudinal Studies , Pandemics , Prospective Studies , Risk Factors , Saliva/chemistry , Seroepidemiologic Studies , Switzerland
16.
Clin Chim Acta ; 510: 717-722, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-764338

ABSTRACT

AIM: This study aims to verify whether standardized saliva collection is suitable for SARS-CoV-2 molecular detection and IgA measurement. METHODS: 43 COVID-19 inpatients and 326 screening subjects underwent naso-pharyngeal (NP)-swab and saliva collection (Salivette). Inpatients also underwent repeated blood collections to evaluate inflammation and organs involvement. In all patients and subjects, SARS-CoV-2 (gene E) rRT-PCR was undertaken in saliva and NP-swabs. Salivary IgA and serum IgA, IgG, IgM were measured on inpatients' samples. RESULTS: NP-swabs and saliva were both SARS-CoV-2 positive in 7 (16%) or both negative in 35 (82%) out of 43 patients successfully included in the study. NP-swabs and saliva results did not perfectly match in one patient (saliva positive, NP-swab negative). Positive molecular results were significantly associated with disease duration (p = 0.0049). 326/326 screening subjects were SARS-CoV-2 negative on both NP-swabs and saliva. Among the 27 saliva samples tested for IgA, 18 were IgA positive. Salivary IgA positivity was associated with pneumonia (p = 0.002) and CRP values (p = 0.0183), not with other clinical and molecular data, or with serum immunoglubulins. CONCLUSIONS: A standardized saliva collection can be adopted to detect SARS-CoV-2 infection in alternative to NP-swabs. Preliminary data on salivary IgA support the use of saliva also for patient monitoring.


Subject(s)
Betacoronavirus/immunology , Clinical Laboratory Techniques , Immunoglobulin A/analysis , Saliva/chemistry , Specimen Handling/standards , Adult , Aged , Aged, 80 and over , COVID-19 Testing , Coronavirus Infections/diagnosis , Female , Humans , Immunoglobulin A/immunology , Male , Middle Aged , Reference Standards , SARS-CoV-2
18.
Ear Nose Throat J ; 100(2_suppl): 131S-138S, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-736305

ABSTRACT

OBJECTIVE: The most widely used diagnostic technique for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is real-time reverse transcriptase-polymerase chain reaction (RT-PCR). It can be done on different samples: nasopharyngeal swabs (NPS) or oropharyngeal swabs (OPS), and self-collected saliva. However, negative findings do not rule out infection. METHODS: A review was conceived to discuss advantages and limitations of the available diagnostic modalities for nonserologic diagnosis of SARS-CoV-2 based on RT-PCR; the article also proposes some practical suggestions to improve diagnostic reliability. RESULTS: A total of 16 papers (corresponding to 452 patients) of the 56 initially identified were included. Most of the papers describe findings from different samples obtained in limited case series; comparative studies are missing. CONCLUSIONS: Diagnostic accuracy of NPS and OPS is suboptimal and the risk of contaminated aerosol dispersal is not negligible. The SARS-CoV-2 RNA can be found in self-collected saliva specimens of many infected patients within 7 to 10 days after symptom onset. There is an urgent need for comparative trials to define the diagnostic modality of choice. Adequate education and training of health care personnel is mandatory.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nasopharynx/chemistry , Oropharynx/chemistry , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Saliva/chemistry , Specimen Handling/methods , Humans , Nasopharynx/virology , Oropharynx/virology , Saliva/virology , Sensitivity and Specificity
20.
Med Hypotheses ; 143: 110124, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-662554

ABSTRACT

Utilising biomarkers for COVID-19 diagnosis, prediction of treatment response and overall prognostication have been investigated recently. However, these ventures have only considered the use of blood-based molecular markers. Saliva is another biofluid that warrants being applied in similar fashion with major advantages that centres on its non-invasive and repeatable collection as well as cost-efficiency. To this end, this article presents a hypothesis for the sources of biomarkers useful clinically for COVID-19 disease outcome estimation and identify the likely implications of their detection in saliva.


Subject(s)
Betacoronavirus , Biomarkers/analysis , Coronavirus Infections/metabolism , Models, Immunological , Pandemics , Pneumonia, Viral/metabolism , Saliva/chemistry , Biomarkers/blood , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Cytokines/analysis , Diagnostic Tests, Routine , Extracellular Vesicles , Gingival Crevicular Fluid/chemistry , Humans , MicroRNAs/analysis , Mouth Diseases/complications , Mouth Diseases/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , SARS-CoV-2 , Saliva/immunology , Saliva/virology , Salivary Glands/metabolism , Salivary Glands/virology , Salivary Proteins and Peptides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL