Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Int J Nanomedicine ; 17: 3043-3054, 2022.
Article in English | MEDLINE | ID: covidwho-1951780

ABSTRACT

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly prevalent and endemic swine pathogen that causes significant economic losses to the global swine industry. Selenium nanoparticles (SeNPs) have attracted increasing attention in the biomedical field, given their antiviral effects. This study aimed to investigate the inhibitory effect of chitosan-coated SeNPs (CS-SeNPs) on PRRSV replication. Methods: In this study, CS-SeNPs were synthesized by chemical reduction and characterized by assessing the morphology, size distribution, zeta potential, and element composition. Marc-145 cells were infected with r-PRRSV-EGFP (0.1 MOI) and inoculated with CS-SeNPs (10 µM). Subsequently, the concentrations of hydrogen peroxide (H2O2) and glutathione (GSH), and glutathione peroxidase (GSH-Px) activity were measured using specific commercial assay kits. ORF5 RNA expression, viral titer, and nucleocapsid (N) protein expression were assessed using qRT-PCR, TCID50, and Western blot. ROS generation, apoptosis rates, and JNK /caspase-3/PARP protein expression were evaluated using dihydroethidium staining, flow cytometry, and Western blot. Results: The results showed that CS-SeNPs treatment significantly suppressed oxidative stress induced by r-PRRSV-EGFP infection by increasing GSH-Px activity, promoting GSH production, and inhibiting H2O2 synthesis. CS-SeNPs treatment significantly inhibited ORF5 gene expression, viral titers, and N protein of r-PRRSV-EGFP at 24 and 48 hours post-infection (hpi) in Marc-145 cells. The increase in apoptosis rates induced by r-PRRSV-EGFP infection was significantly decreased by CS-SeNPs inoculation through inhibiting ROS generation, JNK phosphorylation levels, and cleavage of caspase-3 and PARP mainly at 48 hpi. Conclusion: These results demonstrated that CS-SeNPs suppress PRRSV-induced apoptosis in Marc-145 cells via the ROS/JNK signaling pathway, thereby inhibiting PRRSV replication, which suggested the potential antiviral activity of CS-SeNPs that deserves further investigation for clinical applications.


Subject(s)
Chitosan , Nanoparticles , Porcine respiratory and reproductive syndrome virus , Selenium , Animals , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Apoptosis , Caspase 3/metabolism , Chitosan/chemistry , Chitosan/pharmacology , Hydrogen Peroxide/pharmacology , Nanoparticles/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Porcine respiratory and reproductive syndrome virus/metabolism , Reactive Oxygen Species/metabolism , Selenium/chemistry , Selenium/pharmacology , Swine , Virus Replication
2.
J Trace Elem Med Biol ; 73: 127044, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936888

ABSTRACT

COVID-19 is a rapidly spreading disease, which has caught the world by surprise. Millions of people suffer from illness, and the mortality rates are dramatically high. Currently, there is no specific and immediate treatment for this disease. Remedies are limited to supportive regiments and few antiviral and anti-inflammatory drugs. The lack of a definite cure for COVID-19 is the reason behind its high mortality and global prevalence. COVID-19 can lead to a critical illness with severe respiratory distress and cytokine release. Increased oxidative stress and excessive production of inflammatory cytokines are vital components of severe COVID-19. Micronutrients, metalloids, and vitamins such as iron, manganese, selenium, Zinc, Copper, vitamin A, B family, and C are among the essential and trace elements that play a pivotal role in human nutrition and health. They participate in metabolic processes that lead to energy production. In addition, they support immune functions and act as antioxidants. Therefore, maintaining an optimal level of micronutrients intake, particularly those with antioxidant activities, is essential to fight against oxidative stress, modulate inflammation, and boost the immune system. Therefore, these factors could play a crucial role in COVID-19 prevention and treatment. In this review, we aimed to summarize antiviral properties of different vitamins and minerals. Moreover, we will investigate the correlation between them and their effects in COVID-19 patients.


Subject(s)
COVID-19 , Selenium , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents , COVID-19/drug therapy , Dietary Supplements , Humans , Micronutrients/pharmacology , Micronutrients/therapeutic use , Minerals/therapeutic use , Selenium/therapeutic use , Vitamin A , Vitamins/pharmacology , Vitamins/therapeutic use
3.
J Trace Elem Med Biol ; 73: 127038, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936887

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a systemic disease affecting multiple organs. Furthermore, viral infection depletes several trace elements and promotes complex biochemical reactions in the body. Smoking has been linked to the incidence of COVID-19 and associated mortality, and it may impact clinical effects, viral and bacterial conversion, and treatment outcomes. OBJECTIVES: To study the relationship between severe acute respiratory syndrome coronavirus type 2 and the elemental concentrations of selenium (Se) and mercury (Hg) in biological samples from smokers and nonsmokers infected with the virus and in healthy individuals. METHOD: We evaluated changes in the concentrations of essential (Se) and toxic (Hg) elements in biological samples (blood, nasal fluid, saliva, sputum, serum, and scalp hair) collected from male smokers and nonsmokers (aged 29-59 years) infected with COVID-19 and from healthy men in the same age group. The patients lived in different cities in Sindh Province, Pakistan. The Se and Hg concentrations were determined using atomic absorption spectrophotometry. RESULTS: Se concentrations in all types of biological samples from smokers and nonsmokers with COVID-19 were lower than those of healthy smokers and nonsmokers. Hg concentrations were elevated in both smokers and nonsmokers with COVID-19. CONCLUSIONS: In the current study, persons infected with COVID-19 had higher concentrations of toxic Hg, which could cause physiological disorders, and low concentrations of essential Se, which can also cause weakness. COVID-19 infection showed positive correlations with levels of mercury and selenium. Thus, additional clinical and experimental investigations are essential.


Subject(s)
COVID-19 , Mercury , Selenium , Hair/metabolism , Humans , Male , Spectrophotometry, Atomic
4.
Nutrients ; 14(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911495

ABSTRACT

A trace element is a chemical element with a concentration (or other measures of an amount) that is very low. The essential TEs, such as copper (Cu), selenium (Se), zinc (Zn), iron (Fe) and the electrolyte magnesium (Mg) are among the most commonly studied micronutrients. Each element has been shown to play a distinctive role in human health, and TEs, such as iron (Fe), zinc (Zn) and copper (Cu), are among the essential elements required for the organisms' well-being as they play crucial roles in several metabolic pathways where they act as enzyme co-factors, anti-inflammatory and antioxidant agents. Epidemics of infectious diseases are becoming more frequent and spread at a faster pace around the world, which has resulted in major impacts on the economy and health systems. Different trace elements have been reported to have substantial roles in the pathogenesis of viral infections. Micronutrients have been proposed in various studies as determinants of liver disorders, COVID-19 and T2DM risks. This review article sheds light on the roles and mechanisms of micronutrients in the pathogenesis and prevention of chronic hepatitis B, C and E, as well as Coronavirus-19 infection and type-2 diabetes mellitus. An update on the status of the aforementioned micronutrients in pre-clinical and clinical settings is also briefly summarized.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hepatitis B, Chronic , Selenium , Trace Elements , Copper/metabolism , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Humans , Iron/metabolism , Micronutrients/metabolism , Micronutrients/therapeutic use , Selenium/metabolism , Selenium/therapeutic use , Trace Elements/metabolism , Trace Elements/therapeutic use , Zinc/metabolism , Zinc/therapeutic use
5.
Nutrients ; 14(13)2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-1911492

ABSTRACT

People's intake of some minerals does not meet the nutrient reference values even in high-income countries. Recently, the deficiency of zinc and/or selenium has been considered to cause greater risk of COVID-19 infection and severity. To investigate consumer awareness, we conducted a cross-sectional questionnaire online survey among Japanese people (7500 males and 7500 females) concerning their perceptions of each mineral and the prevalence of mineral-fortified foods and/or mineral supplements. People's perception of each mineral varied: the highest was for calcium (91.8%) and the lowest was for selenium (44.7%). In addition, only a portion of participants believed that they consumed a sufficient amount of each mineral; the highest was sodium (23.7%), and the lowest was manganese (5.2%). In addition, 18.2% of them felt that they could not consume enough sodium, even though most of the Japanese's intake is excessive. Among mineral-fortified-food and/or mineral-supplement users, the purposes for these products were to maintain health (80.6%), supplement nutrients (48.0%), and prevent infectious diseases (23.2%). Only 18.4% of participants knew what amount they took. In conclusion, education is needed to prevent not only the insufficiency/deficiency of each mineral but also an excess intake of sodium.


Subject(s)
COVID-19 , Selenium , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Dietary Supplements , Female , Food, Fortified , Humans , Japan/epidemiology , Male , Minerals , Perception , Prevalence , Sodium
6.
Int J Environ Res Public Health ; 19(11)2022 06 05.
Article in English | MEDLINE | ID: covidwho-1884151

ABSTRACT

COVID-19 represents a worldwide public health emergency, and, beyond the respiratory symptoms characterizing the classic viral disease, growing evidence has highlighted a possible reciprocal relationship between SARS-CoV-2 infection and thyroid dysfunction. The updated data discussed in this review suggests a role of SARS-CoV-2 infection on the thyroid gland, with multiple thyroid pictures described. Conversely, no conclusion can be drawn on the association between pre-existing thyroid disease and increased risk of SARS-CoV-2 infection. In this scenario, selenium (Se), an essential trace element critical for thyroid function and known as an effective agent against viral infections, is emerging as a potential novel therapeutic option for the treatment of COVID-19. Large multicentre cohort studies are required to elucidate the mechanisms underlying thyroid dysfunction during or following recovery from COVID-19, including Se status. Meanwhile, clinical trials should be performed to evaluate whether adequate intake of Se can help address COVID-19 in Se-deficient patients, also avoiding thyroid complications that can contribute to worsening outcomes during infection.


Subject(s)
COVID-19 , Selenium , Thyroid Diseases , Humans , SARS-CoV-2 , Selenium/therapeutic use , Thyroid Diseases/complications , Thyroid Diseases/epidemiology
7.
J Trace Elem Med Biol ; 73: 127015, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1867436

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), a worldwide health problem, is the cause of 2019 coronavirus disease. This study aimed to compare the trace element (selenium and iron), electrolyte (calcium and sodium), and physical activity levels of COVID-19 patients before and after COVID-19 treatment. METHOD: This prospective study was conducted in patients diagnosed with COVID-19 (n = 15). Trace element (selenium and iron), electrolyte (calcium and sodium), and physical activity levels of the patients were compared before and after the treatment. RESULT: Most of patients had selenium deficiency (86.7 %), iron deficiency (73.3 %), calcium deficiency (66.7 %) and sodium deficiency (46.7 %) before COVID-19 treatment. The most important improvements were seen in iron deficiency (from 73.3 % to 26.7 %) and sodium deficiency (from 46.7 % to 13.3 %) after the treatment. Selenium, iron, calcium, and sodium levels of the patients were significantly higher after the treatment (p < 0.05). The patients had low physical activity before and after COVID-19 treatment. In addition, no statistically significant difference was found in the comparison of physical activity levels (p > 0.05). CONCLUSION: This study indicated that selenium, iron, calcium, and sodium levels and deficiencies might improve after treating patients with COVID-19. However, the results of this study showed that the physical activity levels of COVID-19 patients might remain stable and low throughout the treatment process.


Subject(s)
COVID-19 , Selenium , Trace Elements , COVID-19/drug therapy , Calcium , Electrolytes , Exercise , Humans , Ions , Iron , Prospective Studies , SARS-CoV-2 , Selenium/therapeutic use , Sodium , Trace Elements/therapeutic use
8.
Redox Biol ; 50: 102242, 2022 04.
Article in English | MEDLINE | ID: covidwho-1851993

ABSTRACT

The essential trace element selenium (Se) is of central importance for human health and particularly for a regular functioning of the immune system. In the context of the current pandemic, Se deficiency in patients with COVID-19 correlated with disease severity and mortality risk. Selenium has been reported to be associated with the immune response following vaccination, but it is unknown whether this also applies to SARS-CoV-2 vaccines. In this observational study, adult health care workers (n = 126) who received two consecutive anti-SARS-CoV-2 vaccinations by BNT162b2 were followed for up to 24 weeks, with blood samples collected at the first and second dose and at three and 21 weeks after the second dose. Serum SARS-CoV-2 IgG titres, neutralising antibody potency, total Se and selenoprotein P concentrations, and glutathione peroxidase 3 activity were quantified. All three biomarkers of Se status were significantly correlated at all the time points, and participants who reported supplemental Se intake displayed higher Se concentrations. SARS-CoV-2 IgG titres and neutralising potency were highest three weeks after the second dose and decreased towards the last sampling point. The humoral immune response was not related to any of the three Se status biomarkers. Supplemental Se intake had no effect at any time point on the vaccination response as measured by serum SARS-CoV-2 IgG levels or neutralising potency. Overall, no association was found between Se status or supplemental Se intake and humoral immune response to COVID-19 mRNA vaccination.


Subject(s)
COVID-19 , Selenium , Adult , COVID-19 Vaccines , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2 , Vaccination
9.
Nutrients ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820347

ABSTRACT

BACKGROUND: A higher risk for severe clinical courses of coronavirus disease 2019 (COVID-19) has been linked to deficiencies of several micronutrients. We therefore studied the prevalence of deficiencies of eight different micronutrients in a cohort of hospitalized COVID-19-patients. METHODS: We measured admission serum/plasma levels of vitamins A, B12, D, and E, as well as folic acid, zinc, selenium, and copper in 57 consecutively admitted adult patients with confirmed COVID-19 and analyzed prevalence of micronutrient deficiencies and correlations among micronutrient levels. Further, we studied associations of micronutrient levels with severe disease progression, a composite endpoint consisting of in-hospital mortality and/or need for intensive care unit (ICU) treatment with logistic regression. RESULTS: Median age was 67.0 years (IQR 60.0, 74.2) and 60% (n = 34) were male. Overall, 79% (n = 45) of patients had at least one deficient micronutrient level and 33% (n = 19) had ≥3 deficiencies. Most prevalent deficiencies were found for selenium, vitamin D, vitamin A, and zinc (51%, 40%, 39%, and 39%, respectively). We found several correlations among micronutrients with correlation coefficients ranging from r = 0.27 to r = 0.42. The strongest associations with lower risk for severe COVID-19 disease progression (adjusted odds ratios) were found for higher levels of vitamin A (0.18, 95% CI 0.05-0.69, p = 0.01), zinc (0.73, 95% CI 0.55-0.98, p = 0.03), and folic acid (0.88, 95% CI 0.78-0.98, p = 0.02). CONCLUSIONS: We found a high prevalence of micronutrient deficiencies in mostly older patients hospitalized for COVID-19, particularly regarding selenium, vitamin D, vitamin A, and zinc. Several deficiencies were associated with a higher risk for more severe COVID-19 courses. Whether supplementation of micronutrients is useful for prevention of severe clinical courses or treatment of COVID-19 warrants further research.


Subject(s)
COVID-19 , Malnutrition , Selenium , Adult , Aged , COVID-19/epidemiology , Cohort Studies , Disease Progression , Female , Folic Acid , Humans , Male , Malnutrition/epidemiology , Micronutrients , Prevalence , Vitamin A , Vitamin D , Vitamins , Zinc/therapeutic use
10.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1809942

ABSTRACT

The SARS-CoV-2 infection is a highly contagious viral infection, which has claimed millions of lives in the last two years. The infection can cause acute respiratory distress, myocarditis, and systemic inflammatory response in severe cases. The interaction of the viral spike protein with the angiotensin-converting enzyme in various tissues causes damage to vital organs and tissues, leading to complications in the post-infection period. Vaccines and antiviral drugs have improved patient response to the infection, but the long-term effect on vital organs is still unknown. Investigations are now focused on supportive nutrient therapies, which can mitigate the susceptibility as well as the long-term complications of COVID-19. Selenium is one such micronutrient that plays a vital role in preventing oxidative stress induced by the virus. Further, selenium is important for effective immune response, controlling systemic inflammation, and maintain overall health of humans. We examine the role of selenium in various aspects of SARS-CoV-2 infection and address the importance of selenium supplementation in reducing the susceptibility and severity of infection in this review.


Subject(s)
COVID-19 , Selenium , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , Micronutrients , SARS-CoV-2 , Selenium/therapeutic use
11.
Environ Sci Pollut Res Int ; 29(29): 43516-43531, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1782918

ABSTRACT

The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.


Subject(s)
COVID-19 , Selenium , Diet , Humans , Micronutrients , Vitamins/pharmacology
12.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1736944

ABSTRACT

Galectins are soluble ß-D-galactoside-binding proteins whose implication in cancer progression and disease outcome makes them prominent targets for therapeutic intervention. In this frame, the development of small inhibitors that block selectively the activity of galectins represents an important strategy for cancer therapy which is, however, still relatively underdeveloped. To this end, we designed here a rationally and efficiently novel diglycosylated compound, characterized by a selenoglycoside bond and the presence of a lipophilic benzyl group at both saccharide residues. The relatively high binding affinity of the new compound to the carbohydrate recognition domain of two galectins, galectin 3 and galectin 9, its good antiproliferative and anti-migration activity towards melanoma cells, as well as its anti-angiogenesis properties, pave the way for its further development as an anticancer agent.


Subject(s)
Galectin 3 , Selenium , Carbohydrates , Galectin 3/metabolism , Galectins/metabolism , Selenium/pharmacology
14.
Nutrients ; 14(5)2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1732147

ABSTRACT

Sobczyk and Gaunt genetically predicted circulating zinc, selenium, copper, and vitamin K1 levels-instead of directly measuring nutrients in blood-and hypothesized that these levels would associate with SARS-CoV-2 infection and COVID-19 severity [...].


Subject(s)
COVID-19 , Selenium , Copper , Humans , Mendelian Randomization Analysis , Nutrients , SARS-CoV-2 , Vitamin K 1 , Zinc
15.
Cells ; 11(6)2022 03 09.
Article in English | MEDLINE | ID: covidwho-1731953

ABSTRACT

The infection with SARS-CoV-2 impairs the glucose-insulin axis and this contributes to oxidative (OS) and nitrosative (NSS) stress. Here, we evaluated changes in glucose metabolism that could promote the loss of redox homeostasis in COVID-19 patients. This was comparative cohort and analytical study that compared COVID-19 patients and healthy subjects. The study population consisted of 61 COVID-19 patients with and without comorbidities and 25 healthy subjects (HS). In all subjects the plasma glucose, insulin, 8-isoprostane, Vitamin D, H2S and 3-nitrotyrosine were determined by ELISA. The nitrites (NO2-), lipid-peroxidation (LPO), total-antioxidant-capacity (TAC), thiols, glutathione (GSH) and selenium (Se) were determined by spectrophotometry. The glucose, insulin and HOMA-IR (p < 0.001), 8-isoprostanes, 3-nitrotyrosine (p < 0.001) and LPO were increased (p = 0.02) while Vitamin D (p = 0.01), H2S, thiols, TAC, GSH and Se (p < 0.001) decreased in COVID-19 patients in comparison to HS. The SARS-CoV-2 infection resulted in alterations in the glucose-insulin axis that led to hyperglycemia, hyperinsulinemia and IR in patients with and without comorbidities. These alterations increase OS and NSS reflected in increases or decreases in some oxidative markers in plasma with major impact or fatal consequences in patients that course with metabolic syndrome. Moreover, subjects without comorbidities could have long-term alterations in the redox homeostasis after infection.


Subject(s)
COVID-19 , Hyperglycemia , Insulin Resistance , Selenium , Antioxidants/metabolism , Glucose , Glutathione/metabolism , Homeostasis , Humans , Hyperglycemia/complications , Insulin/metabolism , Oxidation-Reduction , Oxidative Stress , SARS-CoV-2 , Sulfhydryl Compounds , Vitamin D , Vitamins
16.
Cells ; 11(3)2022 02 01.
Article in English | MEDLINE | ID: covidwho-1709462

ABSTRACT

There is a reduced intake of selenium in many countries due to low levels of selenium in the soil. This results in an increased cardiovascular risk. Fibroblast growth factor 23 (FGF-23) is active mainly in the metabolism of vitamin D and phosphorus. However, there are indications that FGF-23 may also provide information both on cardiovascular function and prognosis. The aim of the study was to evaluate the effect of supplementation with selenium and coenzyme Q10 on the FGF-23 concentration in an elderly population with low concentrations of both selenium and coenzyme Q10 and in which the supplementation improved cardiac function and mortality. In a randomised double-blind placebo-controlled trial, FGF-23 was measured in 219 individuals at the start and after 48 months. Selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) (n = 118) or placebo (n = 101) were given as a dietary supplement. The intervention time was 48 months. t-Tests, repeated measures of variance, and ANCOVA analyses were used to evaluate the differences in FGF-23 concentration. Following supplementation with selenium and coenzyme Q10, a significantly lower level of FGF-23 could be seen (p = 0.01). Applying 10 years of follow-up, those who later died a cardiovascular death had a significantly higher FGF-23 concentration after 48 months compared with those who survived (p = 0.036), and a significantly lower FGF-23 concentration could be seen in those with a normal renal function compared to those with an impaired renal function (p = 0.027). Supplementation with selenium and coenzyme Q10 to an elderly community-living population low in both substances prevented an increase of FGF-23 and also provided a reduced cardiovascular risk.


Subject(s)
Cardiovascular Diseases , Selenium , Aged , Cardiovascular Diseases/drug therapy , Dietary Supplements , Fibroblast Growth Factors , Humans , Prospective Studies , Selenium/pharmacology , Sweden/epidemiology , Ubiquinone
17.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1701976

ABSTRACT

Selenium has been extensively evaluated clinically as a chemopreventive agent with variable results depending on the type and dose of selenium used. Selenium species are now being therapeutically evaluated as modulators of drug responses rather than as directly cytotoxic agents. In addition, recent data suggest an association between selenium base-line levels in blood and survival of patients with COVID-19. The major focus of this mini review was to summarize: the pathways of selenium metabolism; the results of selenium-based chemopreventive clinical trials; the potential for using selenium metabolites as therapeutic modulators of drug responses in cancer (clear-cell renal-cell carcinoma (ccRCC) in particular); and selenium usage alone or in combination with vaccines in the treatment of patients with COVID-19. Critical therapeutic targets and the potential role of different selenium species, doses, and schedules are discussed.


Subject(s)
COVID-19/drug therapy , Neoplasms/drug therapy , Selenium/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , COVID-19/virology , DNA Repair/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , NF-E2-Related Factor 2/chemistry , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Selenium/chemistry , Selenium/metabolism , Selenium/pharmacology
18.
Inflammopharmacology ; 30(2): 499-503, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1681274

ABSTRACT

BACKGROUND: This study aimed to assess tendency of oxidative stress in COVID-19 patients depending on severity. METHODS: The study was conducted with 80 post-COVID-19 disease patients and 40 acutely ill patients. Content of selenium in blood plasma was detected by a fluorimetric method with di-amino-naphthalene using acidic hydrolysis. Selenoprotein P, malondialdehyde and 4-hydroxynonenal and their metabolite adducts were evaluated by spectrophotometric methods using commercial assay kits. RESULTS: Obtained results showed that selenium content in blood for post-COVID-19 disease patients was of a similar lower norm for Latvian inhabitants. Selenium and seleno-protein P contents for acute patients were significantly decreased compared with post-COVID-19 disease patients. CONCLUSION: In conclusion, COVID-19 involves induction of antioxidant systems-in case of severe disease, patients have significantly low concentration of selenium, seleno-protein P and higher level of oxidative stress, which, in turn, confirms the more intense formation of free radicals in the body.


Subject(s)
COVID-19 , Oxidative Stress , SARS-CoV-2 , Selenium , Selenoprotein P , COVID-19/metabolism , Humans , Selenium/metabolism , Selenoprotein P/metabolism
19.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1638520

ABSTRACT

The selenium field expanded at a rapid rate for about 45 years, from the mid-1970's until about 2015 (see [...].


Subject(s)
Disease Susceptibility , Health Impact Assessment , Homeostasis , Selenium/metabolism , Selenoproteins/metabolism , Humans , Selenium/adverse effects
20.
Nutrients ; 14(2)2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-1637442

ABSTRACT

In the last two years, there has been a surge in the number of publications on the trace element selenium (Se) and selenocysteine-containing selenoproteins in human health, largely due to the pandemic and the multiple roles that this micronutrient and Se-dependent selenoproteins play in various aspects of the disease [...].


Subject(s)
COVID-19/blood , COVID-19/complications , SARS-CoV-2 , Selenium/deficiency , Selenoprotein P/blood , COVID-19/etiology , COVID-19/mortality , Humans , Nutritional Status , Selenocysteine/blood , Selenocysteine/deficiency , Selenoproteins/blood , Selenoproteins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL