Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1760649

ABSTRACT

For tiling of the SARS-CoV-2 genome, the ARTIC Network provided a V4 protocol using 99 pairs of primers for amplicon production and is currently the widely used amplicon-based approach. However, this technique has regions of low sequence coverage and is labour-, time-, and cost-intensive. Moreover, it requires 14 pairs of primers in two separate PCRs to obtain spike gene sequences. To overcome these disadvantages, we proposed a single PCR to efficiently detect spike gene mutations. We proposed a bioinformatic protocol that can process FASTQ reads into spike gene consensus sequences to accurately call spike protein variants from sequenced samples or to fairly express the cases of missing amplicons. We evaluated the in silico detection rate of primer sets that yield amplicon sizes of 400, 1200, and 2500 bp for spike gene sequencing of SARS-CoV-2 to be 59.49, 76.19, and 92.20%, respectively. The in silico detection rate of our proposed single PCR primers was 97.07%. We demonstrated the robustness of our analytical protocol against 3000 Oxford Nanopore sequencing runs of distinct datasets, thus ensuring high-integrity sequencing of spike genes for variant SARS-CoV-2 determination. Our protocol works well with the data yielded from versatile primer designs, making it easy to determine spike protein variants.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Computational Biology , Genome, Viral , Genomics/methods , Humans , Mutation , Mutation Rate , Phylogeny , SARS-CoV-2/classification , Sequence Analysis, DNA
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(6): 748-754, 2021 Dec 25.
Article in English | MEDLINE | ID: covidwho-1753705

ABSTRACT

To explore the application value of nanopore sequencing technique in the diagnosis and treatment of secondary infections in patients with severe coronavirus disease 2019 (COVID-19). A total of 77 clinical specimens from 3 patients with severe COVID-19 were collected. After heat inactivation, all samples were subjected to total nucleic acid extraction based on magnetic bead enrichment. The extracted DNA was used for DNA library construction, then nanopore real-time sequencing detection was performed. The sequencing data were subjected to Centrifuge software database species matching and R program differential analysis to obtain potential pathogen identification. Nanopore sequencing results were compared with respiratory pathogen qPCR panel screening and conventional microbiological testing results to verify the effectiveness of nanopore sequencing detection. Nanopore sequencing results showed that positive pathogen were obtained in 44 specimens (57.1%). The potential pathogens identified by nanopore sequencing included , , and , et al. , , were also detected in clinical microbiological culture-based detection; was detected in respiratory pathogen screening qPCR panel; was only detected by the nanopore sequencing technique. Comprehensive considerations with the clinical symptoms, the patient was treated with antibiotics against , and the infection was controlled. Nanopore sequencing may assist the diagnosis and treatment of severe COVID-19 patients through rapid identification of potential pathogens.


Subject(s)
COVID-19 , Coinfection , Nanopore Sequencing , Nanopores , COVID-19/diagnosis , Humans , Sequence Analysis, DNA/methods
3.
Microb Genom ; 8(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1746154

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is adaptively evolving to ensure its persistence within human hosts. It is therefore necessary to continuously monitor the emergence and prevalence of novel variants that arise. Importantly, some mutations have been associated with both molecular diagnostic failures and reduced or abrogated next-generation sequencing (NGS) read coverage in some genomic regions. Such impacts are particularly problematic when they occur in genomic regions such as those that encode the spike (S) protein, which are crucial for identifying and tracking the prevalence and dissemination dynamics of concerning viral variants. Targeted Sanger sequencing presents a fast and cost-effective means to accurately extend the coverage of whole-genome sequences. We designed a custom set of primers to amplify a 401 bp segment of the receptor-binding domain (RBD) (between positions 22698 and 23098 relative to the Wuhan-Hu-1 reference). We then designed a Sanger sequencing wet-laboratory protocol. We applied the primer set and wet-laboratory protocol to sequence 222 samples that were missing positions with key mutations K417N, E484K, and N501Y due to poor coverage after NGS sequencing. Finally, we developed SeqPatcher, a Python-based computational tool to analyse the trace files yielded by Sanger sequencing to generate consensus sequences, or take preanalysed consensus sequences in fasta format, and merge them with their corresponding whole-genome assemblies. We successfully sequenced 153 samples of 222 (69 %) using Sanger sequencing and confirmed the occurrence of key beta variant mutations (K417N, E484K, N501Y) in the S genes of 142 of 153 (93 %) samples. Additionally, one sample had the Y508F mutation and four samples the S477N. Samples with RT-PCR C t scores ranging from 13.85 to 37.47 (mean=25.70) could be Sanger sequenced efficiently. These results show that our method and pipeline can be used to improve the quality of whole-genome assemblies produced using NGS and can be used with any pairs of the most used NGS and Sanger sequencing platforms.


Subject(s)
Genome, Viral , SARS-CoV-2/genetics , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing , Mutation
5.
Viruses ; 14(2)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1706244

ABSTRACT

Omicron, the novel highly mutated SARS-CoV-2 Variant of Concern (VOC, Pango lineage B.1.1.529) was first collected in early November 2021 in South Africa. By the end of November 2021, it had spread and approached fixation in South Africa, and had been detected on all continents. We analyzed the exponential growth of Omicron over four-week periods in the two most populated of South Africa's provinces, Gauteng and KwaZulu-Natal, arriving at the doubling time estimates of, respectively, 3.3 days (95% CI: 3.2-3.4 days) and 2.7 days (95% CI: 2.3-3.3 days). Similar or even shorter doubling times were observed in other locations: Australia (3.0 days), New York State (2.5 days), UK (2.4 days), and Denmark (2.0 days). Log-linear regression suggests that the spread began in Gauteng around 11 October 2021; however, due to presumable stochasticity in the initial spread, this estimate can be inaccurate. Phylogenetics-based analysis indicates that the Omicron strain started to diverge between 6 October and 29 October 2021. We estimated that the weekly growth of the ratio of Omicron to Delta is in the range of 7.2-10.2, considerably higher than the growth of the ratio of Delta to Alpha (estimated to be in in the range of 2.5-4.2), and Alpha to pre-existing strains (estimated to be in the range of 1.8-2.7). High relative growth does not necessarily imply higher Omicron infectivity. A two-strain SEIR model suggests that the growth advantage of Omicron may stem from immune evasion, which permits this VOC to infect both recovered and fully vaccinated individuals. As we demonstrated within the model, immune evasion is more concerning than increased transmissibility, because it can facilitate larger epidemic outbreaks.


Subject(s)
COVID-19/transmission , Immune Evasion , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Virus Replication/immunology , Australia/epidemiology , COVID-19/epidemiology , Genome, Viral , Humans , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, DNA/statistics & numerical data , South Africa/epidemiology , Time Factors
6.
J Virol ; 96(3): e0192821, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1691422

ABSTRACT

From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.


Subject(s)
Disease Outbreaks , Influenza, Human/epidemiology , Influenza, Human/virology , Influenzavirus C/classification , Influenzavirus C/genetics , Reassortant Viruses , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/genetics , Hong Kong/epidemiology , Humans , Models, Molecular , Mutation , Phylogeny , Public Health Surveillance , Sequence Analysis, DNA , Structure-Activity Relationship , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics
7.
Sci Rep ; 12(1): 2419, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1684100

ABSTRACT

This study aimed to develop the feasible and effective universal screening strategy of the notable SARS-CoV-2 variants by Sanger Sequencing Strategy and then practically applied it for mass screening in Hiroshima, Japan. A total of 734 samples from COVID-19 confirmed cases in Hiroshima were screened for the notable SARS-CoV-2 variants (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.1, C.37, B.1.1.529, etc.). The targeted spike region is amplified by nested RT-PCR using in-house designed primer set hCoV-Spike-A and standard amplification protocol. Additionally, randomly selected 96 samples were also amplified using primer sets hCoV-Spike-B and hCoV-Spike-C. The negative amplified samples were repeated for second attempt of amplification by volume-up protocol. Thereafter, the amplified products were assigned for Sanger sequencing using corresponding primers. The positive amplification rate of primer set hCoV-Spike-A, hCoV-Spike-B and hCoV-Spike-C were 87.3%, 83.3% and 93.8% respectively for standard protocol and increased to 99.6%, 95.8% and 96.9% after second attempt by volume-up protocol. The readiness of genome sequences was 96.9%, 100% and 100% respectively. Among 48 mutant isolates, 26 were B.1.1.7 (Alpha), 7 were E484K single mutation and the rest were other types of mutation. Moreover, 5 cluster cases with single mutation at N501S were firstly reported in Hiroshima. This study indicates the reliability and effectiveness of Sanger sequencing to screen large number of samples for the notable SARS-CoV-2 variants. Compared to the Next Generation Sequencing (NGS), our method introduces the feasible, universally applicable, and practically useful tool for identification of the emerging variants with less expensive and time consuming especially in those countries where the NGS is not practically available. Our method allows not only to identify the pre-existing variants but also to examine other rare type of mutation or newly emerged variants and is crucial for prevention and control of pandemic.


Subject(s)
COVID-19/diagnosis , Mass Screening/methods , SARS-CoV-2/genetics , Sequence Analysis, DNA/methods , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , COVID-19/epidemiology , COVID-19/virology , Feasibility Studies , High-Throughput Nucleotide Sequencing/methods , Humans , Japan/epidemiology , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity , Sequence Homology, Amino Acid
8.
Viruses ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1674829

ABSTRACT

Coronaviruses (CoV) are divided into the genera α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and ß-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the ß-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and ß-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and ß-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.


Subject(s)
Alphacoronavirus/genetics , Alphacoronavirus/isolation & purification , Chiroptera/virology , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral , Alphacoronavirus/classification , Animals , Caves/virology , Coronavirus Infections/virology , Evolution, Molecular , Female , Male , Phylogeny , Sequence Analysis, DNA , Sri Lanka
9.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: covidwho-1625824

ABSTRACT

Infection with enterovirus D68 (EV-D68) has been linked with severe neurological disease such as acute flaccid myelitis (AFM) in recent years. However, active surveillance for EV-D68 is lacking, which makes full assessment of this association difficult. Although a high number of EV-D68 infections were expected in 2020 based on the EV-D68's known biannual circulation patterns, no apparent increase in EV-D68 detections or AFM cases was observed during 2020. We describe an upsurge of EV-D68 detections in wastewater samples from the United Kingdom between July and November 2021 mirroring the recently reported rise in EV-D68 detections in clinical samples from various European countries. We provide the first publicly available 2021 EV-D68 sequences showing co-circulation of EV-D68 strains from genetic clade D and sub-clade B3 as in previous years. Our results show the value of environmental surveillance (ES) for the early detection of circulating and clinically relevant human viruses. The use of a next-generation sequencing (NGS) approach helped us to estimate the prevalence of EV-D68 viruses among EV strains from other EV serotypes and to detect EV-D68 minor variants. The utility of ES at reducing gaps in virus surveillance for EV-D68 and the possible impact of nonpharmaceutical interventions introduced to control the COVID-19 pandemic on EV-D68 transmission dynamics are discussed.


Subject(s)
Enterovirus D, Human/isolation & purification , Waste Water/virology , COVID-19/epidemiology , COVID-19/prevention & control , Capsid Proteins/genetics , Enterovirus D, Human/classification , Enterovirus D, Human/genetics , Humans , Phylogeny , RNA, Viral/genetics , SARS-CoV-2 , Sequence Analysis, DNA , United Kingdom/epidemiology , Wastewater-Based Epidemiological Monitoring , Water Microbiology
10.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625724

ABSTRACT

Bats are a reservoir for coronaviruses (CoVs) that periodically spill over to humans, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. A collection of 174 bat samples originating from South Dakota, Minnesota, Iowa, and Nebraska submitted for rabies virus testing due to human exposure were analyzed using a pan-coronavirus PCR. A previously partially characterized CoV, Eptesicus bat CoV, was identified in 12 (6.9%) samples by nested RT-PCR. Six near-complete genomes were determined. Genetic analysis found a high similarity between all CoV-positive samples, Rocky Mountain bat CoV 65 and alphacoronavirus HCQD-2020 recently identified in South Korea. Phylogenetic analysis of genome sequences showed EbCoV is closely related to bat CoV HKU2 and swine acute diarrhea syndrome CoV; however, topological incongruences were noted for the spike gene that was more closely related to porcine epidemic diarrhea virus. Similar to some alphaCoVs, a novel gene, ORF7, was discovered downstream of the nucleocapsid, whose protein lacked similarity to known proteins. The widespread circulation of EbCoV with similarities to bat viruses that have spilled over to swine warrants further surveillance.


Subject(s)
Alphacoronavirus/classification , Alphacoronavirus/genetics , Chiroptera/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phylogeny , Alphacoronavirus/isolation & purification , Animals , Genome, Viral , Iowa , Midwestern United States , Minnesota , Republic of Korea , Sequence Analysis, DNA , South Dakota , Viral Zoonoses/transmission
11.
Gene ; 813: 146113, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1616498

ABSTRACT

Since late 2019, when SARS-CoV-2 was reported at Wuhan, several sequence analyses have been performed and SARS-CoV-2 genome sequences have been submitted in various databases. Moreover, the impact of these variants on infectivity and response to neutralizing antibodies has been assessed. In the present study, we retrieved a total number of 176 complete and high-quality S glycoprotein sequences of Iranian SARS-COV-2 in public database of the GISAID and GenBank from April 2020 up to May 2021. Then, we identified the number of variables, singleton and parsimony informative sites at both gene and protein levels and discussed the possible functional consequences of important mutations on the infectivity and response to neutralizing antibodies. Phylogenetic tree was constructed to represent the relationship between Iranian SARS-COV2 and variants of concern (VOC), variants of interest (VOI) and reference sequence. We found that the four current VOCs - Alpha, Beta, Gamma and Delta - are circulated in different regions in Iran. The Delta variant is notably more transmissible than other variants, and is expected to become a dominant variant. However, some of the Delta variants in Iran carry an additional mutation, namely E1202Q in the HR2 subdomain that might confer an advantage to viral/cell membrane fusion process. We also observed some more common mutations such as an N-terminal domain (NTD) deletion at position I210 and P863H in fusion peptide-heptad repeat 1 span region in Iranian SARS-COV-2. The reported mutations in the current project have practical significance in prediction of disease spread as well as design of vaccines and drugs.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , COVID-19/epidemiology , COVID-19/metabolism , Databases, Genetic , Humans , Iran/epidemiology , Mutation/genetics , Phylogeny , Protein Binding , RNA, Viral , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Sequence Analysis, DNA/methods , Spike Glycoprotein, Coronavirus/metabolism
12.
Viruses ; 13(12)2021 12 18.
Article in English | MEDLINE | ID: covidwho-1580423

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.


Subject(s)
SARS-CoV-2/genetics , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Genotype , Humans , Mutation , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/classification , Sequence Analysis, DNA/methods
13.
PLoS One ; 16(12): e0260670, 2021.
Article in English | MEDLINE | ID: covidwho-1553776

ABSTRACT

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) genetic diversity and pre-treatment drug resistance (PDR) are major barriers to successful antiretroviral therapy (ART). In China, sexual intercourse is the most frequent route of HIV-1 transmission. However, few studies have analyzed PDR and transmission networks in detail among individuals in China with acute HIV-1 infection and their sexual contacts. METHODS: A cross-sectional study was conducted in Baoding City, Hebei Province, China from 2019-2020. CD4 T cell counts and viral loads were assessed and a HIV-1 genotypic PDR assay was developed in-house. Transmission networks were visualized using Cytoscape with a threshold genetic distance of 0.015 among HIV-1 subtypes. RESULTS: From 139 newly diagnosed and drug-naïve individuals with HIV-1, 132 pol gene sequences were obtained and revealed eight HIV-1 subtypes. Circulating recombinant form (CRF)01_AE was the most frequent subtype (53.0%, 70/132) followed by CRF07_BC (26.5%, 35/132), B (13.6%, 18/132), unique recombinant forms (2.3%, 3/132), CRF55_01B (1.5%, 2/132), CRF103_01B (1.5%, 2/132), CRF65_cpx (0.8%, 1/132), and C (0.8%, 1/132). A total of 47 pol gene sequences were used to generate 10 molecular transmission networks. The overall prevalence of PDR was 7.6% and that of PDR to non-nucleotide reverse transcriptase inhibitors was 6.1%. Of three transmission networks for PDR, two were closely associated with Beijing and Tianjin, while another was restricted to sequences determined in this study. CONCLUSIONS: These results demonstrate that during acute HIV-1 infection, PDR is transmitted in dynamic networks. This suggests that early detection, diagnosis, surveillance, and treatment are critical to effectively control HIV-1 spread.


Subject(s)
Drug Resistance, Viral/genetics , HIV Infections/transmission , Adolescent , Adult , Anti-Retroviral Agents/therapeutic use , China , Cross-Sectional Studies , Female , Genotype , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-1/isolation & purification , Humans , Male , Middle Aged , Phylogeny , RNA, Viral/chemistry , RNA, Viral/metabolism , Reverse Transcriptase Inhibitors/therapeutic use , Sequence Analysis, DNA , Young Adult , pol Gene Products, Human Immunodeficiency Virus/classification , pol Gene Products, Human Immunodeficiency Virus/genetics
14.
Viruses ; 13(12)2021 11 29.
Article in English | MEDLINE | ID: covidwho-1542799

ABSTRACT

As SARS-CoV-2 continues to spread among human populations, genetic changes occur and accumulate in the circulating virus. Some of these genetic changes have caused amino acid mutations, including deletions, which may have a potential impact on critical SARS-CoV-2 countermeasures, including vaccines, therapeutics, and diagnostics. Considerable efforts have been made to categorize the amino acid mutations of the angiotensin-converting enzyme 2 (ACE2) receptor binding domain (RBD) of the spike (S) protein, along with certain mutations in other regions within the S protein as specific variants, in an attempt to study the relationship between these mutations and the biological behavior of the virus. However, the currently used whole genome sequencing surveillance technologies can test only a small fraction of the positive specimens with high viral loads and often generate uncertainties in nucleic acid sequencing that needs additional verification for precision determination of mutations. This article introduces a generic protocol to routinely sequence a 437-bp nested RT-PCR cDNA amplicon of the ACE2 RBD and a 490-bp nested RT-PCR cDNA amplicon of the N-terminal domain (NTD) of the S gene for detection of the amino acid mutations needed for accurate determination of all variants of concern and variants of interest according to the definitions published by the U.S. Centers for Disease Control and Prevention. This protocol was able to amplify both nucleic acid targets into cDNA amplicons to be used as templates for Sanger sequencing on all 16 clinical specimens that were positive for SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Diagnostic Tests, Routine/methods , SARS-CoV-2/genetics , Binding Sites/genetics , COVID-19/diagnosis , COVID-19/virology , Humans , Mutation , Protein Domains/genetics , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics
15.
Genes (Basel) ; 12(11)2021 11 18.
Article in English | MEDLINE | ID: covidwho-1533884

ABSTRACT

Multiple sequence alignment (MSA) is the basis for almost all sequence comparison and molecular phylogenetic inferences. Large-scale genomic analyses are typically associated with automated progressive MSA without subsequent manual adjustment, which itself is often error-prone because of the lack of a consistent and explicit criterion. Here, I outlined several commonly encountered alignment errors that cannot be avoided by progressive MSA for nucleotide, amino acid, and codon sequences. Methods that could be automated to fix such alignment errors were then presented. I emphasized the utility of position weight matrix as a new tool for MSA refinement and illustrated its usage by refining the MSA of nucleotide and amino acid sequences. The main advantages of the position weight matrix approach include (1) its use of information from all sequences, in contrast to other commonly used methods based on pairwise alignment scores and inconsistency measures, and (2) its speedy computation, making it suitable for a large number of long viral genomic sequences.


Subject(s)
Automation, Laboratory/methods , Genomics/methods , Sequence Alignment/methods , Algorithms , Animals , Automation, Laboratory/standards , Genomics/standards , Humans , Phylogeny , Sensitivity and Specificity , Sequence Alignment/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Sequence Analysis, Protein/methods , Sequence Analysis, Protein/standards
16.
NPJ Biofilms Microbiomes ; 7(1): 81, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526078

ABSTRACT

The oral microbiome has been connected with lung health and may be of significance in the progression of SARS-CoV-2 infection. Saliva-based SARS-CoV-2 tests provide the opportunity to leverage stored samples for assessing the oral microbiome. However, these collection kits have not been tested for their accuracy in measuring the oral microbiome. Saliva is highly enriched with human DNA and reducing it prior to shotgun sequencing may increase the depth of bacterial reads. We examined both the effect of saliva collection method and sequence processing on measurement of microbiome depth and diversity by 16S rRNA gene amplicon and shotgun metagenomics. We collected 56 samples from 22 subjects. Each subject provided saliva samples with and without preservative, and a subset provided a second set of samples the following day. 16S rRNA gene (V4) sequencing was performed on all samples, and shotgun metagenomics was performed on a subset of samples collected with preservative with and without human DNA depletion before sequencing. We observed that the beta diversity distances within subjects over time was smaller than between unrelated subjects, and distances within subjects were smaller in samples collected with preservative. Samples collected with preservative had higher alpha diversity measuring both richness and evenness. Human DNA depletion before extraction and shotgun sequencing yielded higher total and relative reads mapping to bacterial sequences. We conclude that collecting saliva with preservative may provide more consistent measures of the oral microbiome and depleting human DNA increases yield of bacterial sequences.


Subject(s)
Microbiota/genetics , Saliva/microbiology , Adult , Bacteria/genetics , COVID-19/genetics , DNA/genetics , DNA, Bacterial/genetics , Female , Humans , Male , Metagenome/genetics , Metagenomics/methods , Middle Aged , RNA, Ribosomal, 16S/genetics , SARS-CoV-2/pathogenicity , Sequence Analysis, DNA/methods
17.
Genome Med ; 13(1): 182, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523323

ABSTRACT

BACKGROUND: Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS: CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS: An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of ß-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION: CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.


Subject(s)
COVID-19/pathology , Cross Infection/transmission , Metagenomics , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Coinfection/drug therapy , Coinfection/microbiology , Corynebacterium/genetics , Corynebacterium/isolation & purification , Cross Infection/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , beta-Lactamases/genetics
18.
Infect Genet Evol ; 96: 105106, 2021 12.
Article in English | MEDLINE | ID: covidwho-1506080

ABSTRACT

Coronaviruses (especially SARS-CoV-2) are characterized by rapid mutation and wide spread. As these characteristics easily lead to global pandemics, studying the evolutionary relationship between viruses is essential for clinical diagnosis. DNA sequencing has played an important role in evolutionary analysis. Recent alignment-free methods can overcome the problems of traditional alignment-based methods, which consume both time and space. This paper proposes a novel alignment-free method called the correlation coefficient feature vector (CCFV), which defines a correlation measure of the L-step delay of a nucleotide location from its location in the original DNA sequence. The numerical feature is a 16×L-dimensional numerical vector describing the distribution characteristics of the nucleotide positions in a DNA sequence. The proposed L-step delay correlation measure is interestingly related to some types of L+1 spaced mers. Unlike traditional gene comparison, our method avoids the computational complexity of multiple sequence alignment, and hence improves the speed of sequence comparison. Our method is applied to evolutionary analysis of the common human viruses including SARS-CoV-2, Dengue virus, Hepatitis B virus, and human rhinovirus and achieves the same or even better results than alignment-based methods. Especially for SARS-CoV-2, our method also confirms that bats are potential intermediate hosts of SARS-CoV-2.


Subject(s)
Genome, Viral/genetics , Phylogeny , Sequence Analysis, DNA/methods , Coronavirus/genetics , Dengue Virus/genetics , Hepatitis B/genetics , Humans , Models, Genetic , Rhinovirus/genetics , SARS-CoV-2/genetics , Sequence Alignment
19.
Indian J Pathol Microbiol ; 64(4): 771-775, 2021.
Article in English | MEDLINE | ID: covidwho-1485273

ABSTRACT

CONTEXT: The rapid outbreak of SARS-CoV-2 has become a significant global health concern, highlighting the dire need for antiviral therapeutic agents. RNA-dependent RNA polymerase (RdRp) of coronavirus plays crucial roles in RNA synthesis, and hence remains the druggable target for the treatment of this disease. The most potent broad-spectrum inhibitors of viral RdRp are members of nucleoside analogs (NAs). However, SARS-CoV-2 proved to be a challenging one for the novel NA drug designing strategy because coronavirus possesses an exonuclease (ExoN) domain that is capable of excising NAs, thus showing resistance to existing antiviral drugs. AIM: The objective of our study was to compare the SARS-CoV-2 exonuclease (nsp14) protein sequence of Wuhan-type virus with those of Indian SARS-Cov-2 isolates and to study the effect of multiple mutations on the secondary structure alterations of proteins. SUBJECTS AND METHODS: Multiple-sequence alignment of exonuclease amino-acid sequences followed by phylogenetic analysis and prediction of its secondary structure of the protein was performed. RESULTS: Altogether, seven mutations were detected in the nsp14 of Indian SARS-CoV-2 isolates. Subsequently, prediction of their secondary structures revealed that mutations altered the structural stability of exonuclease proteins. CONCLUSIONS: Present findings, therefore, further suggest that evolvability of SARS-CoV-2 is primarily associated with the onset of multiple novel mutations that rapidly spread at several new locations of the viral genome and also provides important insight to develop specific control strategies to fight against COVID-19 infections.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/genetics , Exonucleases/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Sequence Analysis, DNA , China , Drug Delivery Systems/methods , Genetic Variation , Genotype , Humans , India , Mutation , Phylogeny
20.
Viruses ; 13(10)2021 09 30.
Article in English | MEDLINE | ID: covidwho-1481008

ABSTRACT

Measles virus (MeV) genotype B3 is one globally significant circulating genotype. Here, we present a systematic description of long-term evolutionary characterizations of the MeV genotype B3's hemagglutinin (H) gene in the elimination era. Our results show that the B3 H gene can be divided into two main sub-genotypes, and the highest intra-genotypic diversity was observed in 2004. MeV genotype B3's H gene diverged in 1976; its overall nucleotide substitution rate is estimated to be 5.697 × 10-4 substitutions/site/year, and is slowing down. The amino acid substitution rate of genotype B3's H gene is also decreasing, and the mean effective population size has been in a downward trend since 2000. Selection pressure analysis only recognized a few sites under positive selection, and the number of positive selection sites is getting smaller. All of these observations may reveal that genotype B3's H gene is not under strong selection pressure, and is becoming increasingly conservative. MeV H-gene or whole-genome sequencing should be routine, so as to better elucidate the molecular epidemiology of MeV in the future.


Subject(s)
Hemagglutinins, Viral/genetics , Measles virus/genetics , China , Evolution, Molecular , Genetic Variation/genetics , Genotype , Hemagglutinins/genetics , Humans , Measles/virology , Molecular Epidemiology/methods , Phylogeny , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL