Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add filters

Year range
1.
Biomolecules ; 11(5)2021 04 27.
Article in English | MEDLINE | ID: covidwho-1215327

ABSTRACT

The SARS-CoV-2 outbreak was declared a worldwide pandemic in 2020. Infection triggers the respiratory tract disease COVID-19, which is accompanied by serious changes in clinical biomarkers such as hemoglobin and interleukins. The same parameters are altered during hemolysis, which is characterized by an increase in labile heme. We present two computational-experimental approaches aimed at analyzing a potential link between heme-related and COVID-19 pathophysiologies. Herein, we performed a detailed analysis of the common pathways induced by heme and SARS-CoV-2 by superimposition of knowledge graphs covering heme biology and COVID-19 pathophysiology. Focus was laid on inflammatory pathways and distinct biomarkers as the linking elements. In a second approach, four COVID-19-related proteins, the host cell proteins ACE2 and TMPRSS2 as well as the viral proteins 7a and S protein were computationally analyzed as potential heme-binding proteins with an experimental validation. The results contribute to the understanding of the progression of COVID-19 infections in patients with different clinical backgrounds and may allow for a more individual diagnosis and therapy in the future.


Subject(s)
/metabolism , Heme/metabolism , /physiology , /metabolism , Computational Biology , Hemolysis , Host-Pathogen Interactions , Humans , Inflammation/metabolism , Inflammation/pathology , Models, Biological , Models, Molecular , Protein Binding , Protein Interaction Maps , Serine Endopeptidases/metabolism , Viral Proteins/metabolism
2.
Int J Mol Sci ; 22(9)2021 Apr 25.
Article in English | MEDLINE | ID: covidwho-1202187

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, infects host cells using the angiotensin I converting enzyme 2 (ACE2) as its receptor after priming by host proteases, including TMPRSS2. COVID-19 affects multiple organ systems, and male patients suffer increased severity and mortality. Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women and is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is associated with obesity and cardiometabolic comorbidities, both being risk factors associated with severe COVID-19 pathology. We hypothesize that elevated androgens in PCOS regulate SARS-CoV-2 entry proteins in multiple tissues increasing the risk for this population. Female mice were treated with dihydrotestosterone (DHT) for 90 days. Body composition was measured by EchoMRI. Fasting glucose was determined by an enzymatic method. mRNA and protein levels of ACE2, Tmprss2, Cathepsin L, Furin, Tmprss4, and Adam17 were quantified by RT-qPCR, Western-blot, or ELISA in tissues, serum, and urine. DHT treatment increased body weight, fat and lean mass, and fasting glucose. Ace2 mRNA was upregulated in the lung, cecum, heart, and kidney, while downregulated in the brain by DHT. ACE2 protein was upregulated by DHT in the small intestine, heart, and kidney. The SARS-CoV-2 priming proteases Tmprss2, Cathepsin L, and Furin mRNA were upregulated by DHT in the kidney. ACE2 sheddase Adam17 mRNA was upregulated by DHT in the kidney, which corresponded with increased urinary ACE2 in DHT treated mice. Our results highlight the potential for increased cardiac, renal, and gastrointestinal dysfunction in PCOS women with COVID-19.


Subject(s)
/pathology , Hyperandrogenism/pathology , Polycystic Ovary Syndrome/pathology , /metabolism , /blood , /metabolism , Animals , Blood Glucose/analysis , Body Weight/drug effects , /virology , Cathepsin L/genetics , Cathepsin L/metabolism , Dihydrotestosterone/pharmacology , Female , Humans , Kidney/metabolism , Mice , Mice, Inbred C57BL , Polycystic Ovary Syndrome/complications , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Up-Regulation/drug effects , Virus Internalization
3.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1201474

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of Coronavirus Disease-2019 (COVID-19) in humans. ACE-2 is a type I transmembrane metallocarboxypeptidase expressed in vascular endothelial cells, alveolar type 2 lung epithelial cells, renal tubular epithelium, Leydig cells in testes and gastrointestinal tract. ACE2 mediates the interaction between host cells and SARS-CoV-2 spike (S) protein. However, ACE2 is not only a SARS-CoV-2 receptor, but it has also an important homeostatic function regulating renin-angiotensin system (RAS), which is pivotal for both the cardiovascular and immune systems. Therefore, ACE2 is the key link between SARS-CoV-2 infection, cardiovascular diseases (CVDs) and immune response. Susceptibility to SARS-CoV-2 seems to be tightly associated with ACE2 availability, which in turn is determined by genetics, age, gender and comorbidities. Severe COVID-19 is due to an uncontrolled and excessive immune response, which leads to acute respiratory distress syndrome (ARDS) and multi-organ failure. In spite of a lower ACE2 expression on cells surface, patients with CVDs have a higher COVID-19 mortality rate, which is likely driven by the imbalance between ADAM metallopeptidase domain 17 (ADAM17) protein (which is required for cleavage of ACE-2 ectodomain resulting in increased ACE2 shedding), and TMPRSS2 (which is required for spike glycoprotein priming). To date, ACE inhibitors and Angiotensin II Receptor Blockers (ARBs) treatment interruption in patients with chronic comorbidities appears unjustified. The rollout of COVID-19 vaccines provides opportunities to study the effects of different COVID-19 vaccines on ACE2 in patients on treatment with ACEi/ARB.


Subject(s)
/metabolism , Cardiovascular Diseases/pathology , /physiology , ADAM17 Protein/metabolism , /prevention & control , /immunology , Cardiovascular Diseases/complications , Humans , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism
4.
PLoS Pathog ; 17(4): e1009500, 2021 04.
Article in English | MEDLINE | ID: covidwho-1197396

ABSTRACT

The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.


Subject(s)
/metabolism , Respiratory System/metabolism , Respiratory System/virology , Spike Glycoprotein, Coronavirus/metabolism , /transmission , Coronavirus 229E, Human/metabolism , Furin/metabolism , Humans , Membrane Proteins/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Peptide Hydrolases/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Temperature , Virus Internalization , Virus Replication/physiology
5.
Top Curr Chem (Cham) ; 379(3): 23, 2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1196651

ABSTRACT

Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still a pandemic around the world. Currently, specific antiviral drugs to control the epidemic remain deficient. Understanding the details of SARS-CoV-2 structural biology is extremely important for development of antiviral agents that will enable regulation of its life cycle. This review focuses on the structural biology and medicinal chemistry of various key proteins (Spike, ACE2, TMPRSS2, RdRp and Mpro) in the life cycle of SARS-CoV-2, as well as their inhibitors/drug candidates. Representative broad-spectrum antiviral drugs, especially those against the homologous virus SARS-CoV, are summarized with the expectation they will drive the development of effective, broad-spectrum inhibitors against coronaviruses. We are hopeful that this review will be a useful aid for discovery of novel, potent anti-SARS-CoV-2 drugs with excellent therapeutic results in the near future.


Subject(s)
Antiviral Agents/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry , /antagonists & inhibitors , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , /pathology , Drug Repositioning , Humans , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/metabolism , Virus Internalization/drug effects
6.
mSphere ; 6(2)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1186210

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a massive impact on human lives worldwide. While the airborne SARS-CoV-2 primarily affects the lungs, viremia is not uncommon. As placental trophoblasts are directly bathed in maternal blood, they are vulnerable to SARS-CoV-2. Intriguingly, the human fetus is largely spared from SARS-CoV-2 infection. We tested whether the human placenta expresses the main SARS-CoV-2 entry factors angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and furin and showed that ACE2 and TMPRSS2 are expressed in the trophoblast rather than in other placental villous cells. While furin is expressed in the main placental villous cell types, we surveyed, trophoblasts exhibit the highest expression. In line with the expression of these entry factors, we demonstrated that a SARS-CoV-2 pseudovirus could enter primary human trophoblasts. Mechanisms underlying placental defense against SARS-CoV-2 infection likely involve postentry processing, which may be germane for mitigating interventions against SARS-CoV-2.IMPORTANCE Pregnant women worldwide have been affected by COVID-19. As the virus is commonly spread to various organs via the bloodstream and because human placental trophoblasts are directly bathed in maternal blood, feto-placental infection by SARS-CoV-2 seems likely. However, despite the heightened risk to pregnant women, thus far the transmission risk of COVID-19 to the feto-placental unit seems extremely low. This has been recently attributed to a negligible expression of SARS-CoV-2 entry factors in the human placenta. We therefore sought to explore the expression of the entry factors ACE2 and TMPRSS2 in the different cell types of human placental villi. Using a combination of transcriptome sequencing (RNA-seq), real-time quantitative PCR (RT-qPCR), in situ hybridization, and immunofluorescence, we found that trophoblasts, but not the other main villous cell types, express ACE2 and TMPRSS2, with a broad expression of furin. Correspondingly, we also showed that primary human trophoblasts are permissive to entry of SARS-CoV-2 pseudovirus particles.


Subject(s)
/metabolism , Furin/metabolism , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism , Trophoblasts/metabolism , Cells, Cultured , Female , Fetus/virology , Humans , Pregnancy , Pregnancy Complications, Infectious/virology , Virus Internalization
7.
Nutrients ; 13(4)2021 Apr 14.
Article in English | MEDLINE | ID: covidwho-1187014

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for one of the worst pandemics in modern history. Several prevention and treatment strategies have been designed and evaluated in recent months either through the repurposing of existing treatments or the development of new drugs and vaccines. In this study, we show that L-carnitine tartrate supplementation in humans and rodents led to significant decreases of key host dependency factors, notably angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and Furin, which are responsible for viral attachment, viral spike S-protein cleavage, and priming for viral fusion and entry. Interestingly, pre-treatment of Calu-3, human lung epithelial cells, with L-carnitine tartrate led to a significant and dose-dependent inhibition of the infection by SARS-CoV-2. Infection inhibition coincided with a significant decrease in ACE2 mRNA expression levels. These data suggest that L-carnitine tartrate should be tested with appropriate trials in humans for the possibility to limit SARS-CoV-2 infection.


Subject(s)
/metabolism , Carnitine/administration & dosage , Tartrates/administration & dosage , Adult , Aged , Animals , Carnitine/pharmacology , Cell Line , Cell Survival/drug effects , Female , Furin/blood , Furin/metabolism , Humans , Inflammation/metabolism , Male , Middle Aged , Rats , Serine Endopeptidases/blood , Serine Endopeptidases/metabolism , Tartrates/pharmacology , Young Adult
9.
Front Immunol ; 12: 597399, 2021.
Article in English | MEDLINE | ID: covidwho-1167337

ABSTRACT

There exists increasing evidence that people with preceding medical conditions, such as diabetes and cancer, have a higher risk of infection with SARS-CoV-2 and are more vulnerable to severe disease. To get insights into the possible role of the immune system upon COVID-19 infection, 2811 genes of the gene ontology term "immune system process GO: 0002376" were selected for coexpression analysis of the human targets of SARS-CoV-2 (HT-SARS-CoV-2) ACE2, TMPRSS2, and FURIN in tissue samples from patients with cancer and diabetes mellitus. The network between HT-SARS-CoV-2 and immune system process genes was analyzed based on functional protein associations using STRING. In addition, STITCH was employed to determine druggable targets. DPP4 was the only immune system process gene, which was coexpressed with the three HT-SARS-CoV-2 genes, while eight other immune genes were at least coexpressed with two HT-SARS-CoV-2 genes. STRING analysis between immune and HT-SARS-CoV-2 genes plotted 19 associations of which there were eight common networking genes in mixed healthy (323) and pan-cancer (11003) tissues in addition to normal (87), cancer (90), and diabetic (128) pancreatic tissues. Using this approach, three commonly applicable druggable connections between HT-SARS-CoV-2 and immune system process genes were identified. These include positive associations of ACE2-DPP4 and TMPRSS2-SRC as well as a negative association of FURIN with ADAM17. Furthermore, 16 drugs were extracted from STITCH (score <0.8) with 32 target genes. Thus, an immunological network associated with HT-SARS-CoV-2 using bioinformatics tools was identified leading to novel therapeutic opportunities for COVID-19.


Subject(s)
Diabetes Mellitus/metabolism , Neoplasms/metabolism , /metabolism , Spike Glycoprotein, Coronavirus/metabolism , /genetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , /genetics , /metabolism , Databases, Genetic , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Furin/genetics , Furin/metabolism , Gene Expression Regulation/immunology , Gene Ontology , Genome-Wide Association Study , Genomics , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/virology , Pancreas/immunology , Pancreas/metabolism , Pancreas/virology , Protein Interaction Maps/genetics , Protein Interaction Maps/immunology , /immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
10.
Sci Rep ; 11(1): 7307, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1164913

ABSTRACT

Outcomes of various clinical studies for the coronavirus disease 2019 (COVID-19) treatment indicated that the drug acts via inhibition of multiple pathways (targets) is likely to be more successful and promising. Keeping this hypothesis intact, the present study describes for the first-time, Grazoprevir, an FDA approved anti-viral drug primarily approved for Hepatitis C Virus (HCV), mediated multiple pathway control via synergistic inhibition of viral entry targeting host cell Angiotensin-Converting Enzyme 2 (ACE-2)/transmembrane serine protease 2 (TMPRSS2) and viral replication targeting RNA-dependent RNA polymerase (RdRP). Molecular modeling followed by in-depth structural analysis clearly demonstrated that Grazoprevir interacts with the key residues of these targets. Futher, Molecular Dynamics (MD) simulations showed stability and burial of key residues after the complex formation. Finally, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis identified the governing force of drug-receptor interactions and stability. Thus, we believe that Grazoprevir could be an effective therapeutics for the treatment of the COVID-19 pandemic with a promise of unlikely drug resistance owing to multiple inhibitions of eukaryotic and viral proteins, thus warrants further clinical studies.


Subject(s)
Amides/metabolism , Amides/pharmacology , Antiviral Agents/pharmacology , Carbamates/metabolism , Carbamates/pharmacology , Cyclopropanes/metabolism , Cyclopropanes/pharmacology , Quinoxalines/metabolism , Quinoxalines/pharmacology , Sulfonamides/metabolism , Sulfonamides/pharmacology , /chemistry , Antiviral Agents/metabolism , Drug Repositioning , Humans , Models, Molecular , Molecular Dynamics Simulation , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Virus Internalization/drug effects
11.
Cell Rep ; 35(1): 108959, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1163484

ABSTRACT

There is an urgent need for antivirals to treat the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To identify new candidates, we screen a repurposing library of ∼3,000 drugs. Screening in Vero cells finds few antivirals, while screening in human Huh7.5 cells validates 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we find that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we find nine drugs are antiviral in respiratory cells, seven of which have been used in humans, and three are US Food and Drug Administration (FDA) approved, including cyclosporine. We find that the antiviral activity of cyclosporine is targeting Cyclophilin rather than calcineurin, revealing essential host targets that have the potential for rapid clinical implementation.


Subject(s)
/drug therapy , Cyclosporine/pharmacology , Drug Repositioning , Epithelial Cells/metabolism , Lung/metabolism , /metabolism , Animals , /pathology , Chlorocebus aethiops , Epithelial Cells/pathology , Epithelial Cells/virology , Humans , Lung/pathology , Lung/virology , Serine Endopeptidases/metabolism , United States , United States Food and Drug Administration , Vero Cells
12.
Eur Rev Med Pharmacol Sci ; 25(5): 2409-2414, 2021 03.
Article in English | MEDLINE | ID: covidwho-1148418

ABSTRACT

The COVID-19 (Corona Virus Disease 2019) outbreak, which seriously affected people's lives across the world, has not been effectively controlled. Previous studies have demonstrated that SARS-COV-2 (Severe acute respiratory syndrome coronavirus 2) infecting host cells mainly rely on binding to receptor proteins, namely ACE2 and TMPRSS2. COVID-19 transmission is faster than the severe acute respiratory syndrome (SARS) pneumonia outbreak in 2002. This is mainly attributed to the different pathways of virus-infected host cells, coupled with patients' atypical clinical characteristics. SARS-CoV-2 is mainly transmitted through respiratory droplets and contact, infecting lung tissues before damaging other body organs, such as the liver, brain, kidney and heart. The present study identified potential target genes for SARS-COV-2 receptors, ACE2 and TMPRSS2, in normal human lung tissue. The findings provide novel insights that will guide future drug development approaches for treatment of COVID-19.


Subject(s)
/genetics , Receptors, Virus/genetics , Serine Endopeptidases/genetics , /biosynthesis , /metabolism , Correlation of Data , Gene Expression , Humans , Receptors, Virus/biosynthesis , Receptors, Virus/metabolism , /metabolism , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/metabolism
13.
Nat Commun ; 12(1): 1726, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1142436

ABSTRACT

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Subject(s)
/drug therapy , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , alpha 1-Antitrypsin/pharmacology , Antibodies, Viral/blood , Antiviral Agents/pharmacology , Caco-2 Cells , Humans , Immunoglobulin G/blood , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
14.
Sci Rep ; 11(1): 5639, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132098

ABSTRACT

Patients with cancer demonstrate particularly poor outcomes from COVID-19. To provide information essential for understanding the biologic underpinnings of this association, we analyzed whole-transcriptome RNA expression data obtained from a large cohort of cancer patients to characterize expression of ACE2, TMPRSS2, and other proteases that are involved in viral attachment to and entry into target cells. We find substantial variability of expression of these factors across tumor types and identify subpopulations expressing ACE2 at very high levels. In some tumor types, especially in gastrointestinal cancers, expression of ACE2 and TMPRSS2 is highly correlated. Furthermore, we found infiltration with T-cell and natural killer (NK) cell infiltration to be particularly pronounced in ACE2-high tumors. These findings suggest that subsets of cancer patients exist with gene expression profiles that may be associated with heightened susceptibility to SARS-CoV-2 infection, in whom malignant tumors function as viral reservoir and possibly promote the frequently detrimental hyper-immune response in patients infected with this virus.


Subject(s)
/metabolism , Neoplasms/enzymology , Serine Endopeptidases/metabolism , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Neoplasms/complications , RNA/metabolism , Tumor Microenvironment , Whole Exome Sequencing
15.
Int J Biol Macromol ; 179: 601-609, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1131358

ABSTRACT

Proteinases with the (chymo)trypsin-like serine/cysteine fold comprise a large superfamily performing their function through the Acid - Base - Nucleophile catalytic triad. In our previous work (Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. Int J Biol Macromol. 2020;153:399-411), we described a universal three-dimensional (3D) structural motif, NBCZone, that contains eleven amino acids: dipeptide 42 T-43 T, pentapeptide 54 T-55 T-56 T-57 T(base)-58 T, tripeptide 195 T(nucleophile)-196 T-197 T and residue 213 T (T - numeration of amino acids in trypsin). The comparison of the NBCZones among the members of the (chymo)trypsin-like protease family suggested the existence of 15 distinct groups. Within each group, the NBCZones incorporate an identical set of conserved interactions and bonds. In the present work, the structural environment of the catalytic acid at the position 102 T and the fourth member of the "catalytic tetrad" at the position 214 T was analyzed in 169 3D structures of proteinases with the (chymo)trypsin-like serine/cysteine fold. We have identified a complete Structural Catalytic Core (SCC) consisting of two classes and four groups. The proteinases belonging to different classes and groups differ from each other by the nature of the interaction between their N- and C-terminal ß-barrels. Comparative analysis of the 3CLpro(s) from SARS-CoV-2 and SARS-CoV, used as an example, showed that the amino acids at positions 103 T and 179 T affect the nature of the interaction of the "catalytic acid" core (102 T-Core, N-terminal ß-barrel) with the "supplementary" core (S-Core, C-terminal ß-barrel), which ultimately results in the modulation of the enzymatic activity. The reported analysis represents an important standalone contribution to the analysis and systematization of the 3D structures of (chymo)trypsin-like serine/cysteine fold proteinases. The use of the developed approach for the comparison of 3D structures will allow, in the event of the appearance of new representatives of a given fold in the PDB, to quickly determine their structural homologues with the identification of possible differences.


Subject(s)
Cysteine Proteases/chemistry , Serine Proteases/chemistry , Amino Acid Sequence , Binding Sites , Catalysis , Catalytic Domain , Cysteine Proteases/metabolism , Humans , Models, Molecular , SARS Virus/chemistry , SARS Virus/metabolism , /metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Trypsin/metabolism
16.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1120057

ABSTRACT

Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.


Subject(s)
Anticoagulants/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Guanidines/pharmacology , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Betacoronavirus/metabolism , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Gabexate/analogs & derivatives , Gabexate/pharmacology , HEK293 Cells , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
17.
Viruses ; 13(3)2021 02 28.
Article in English | MEDLINE | ID: covidwho-1122331

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) utilizes host proteases, including a plasma membrane-associated transmembrane protease, serine 2 (TMPRSS2) to cleave and activate the virus spike protein to facilitate cellular entry. Although TMPRSS2 is a well-characterized type II transmembrane serine protease (TTSP), the role of other TTSPs on the replication of SARS-CoV-2 remains to be elucidated. Here, we have screened 12 TTSPs using human angiotensin-converting enzyme 2-expressing HEK293T (293T-ACE2) cells and Vero E6 cells and demonstrated that exogenous expression of TMPRSS11D and TMPRSS13 enhanced cellular uptake and subsequent replication of SARS-CoV-2. In addition, SARS-CoV-1 and SARS-CoV-2 share the same TTSPs in the viral entry process. Our study demonstrates the impact of host TTSPs on infection of SARS-CoV-2, which may have implications for cell and tissue tropism, for pathogenicity, and potentially for vaccine development.


Subject(s)
/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , /metabolism , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Vero Cells , Virus Internalization
18.
Bioorg Med Chem Lett ; 40: 127906, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1118337

ABSTRACT

Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , Niclosamide/analogs & derivatives , Niclosamide/pharmacology , Zika Virus/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Drug Stability , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Niclosamide/metabolism , Protein Binding , Rats , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
19.
J Cell Mol Med ; 25(8): 3840-3855, 2021 04.
Article in English | MEDLINE | ID: covidwho-1116957

ABSTRACT

Congestive heart failure (CHF) is often associated with kidney and pulmonary dysfunction. Activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid sodium retention, cardiac hypertrophy and oedema formation, including lung congestion. While the status of the classic components of RAAS such as renin, angiotensin converting enzyme (ACE), angiotensin II (Ang II) and angiotensin II receptor AT-1 is well studied in CHF, the expression of angiotensin converting enzyme-2 (ACE2), a key enzyme of angiotensin 1-7 (Ang 1-7) generation in the pulmonary, cardiac and renal systems has not been studied thoroughly in this clinical setting. This issue is of a special interest as Ang 1-7 counterbalance the vasoconstrictory, pro-inflammatory and pro-proliferative actions of Ang II. Furthermore, CHF predisposes to COVID-19 disease severity, while ACE2 also serves as the binding domain of SARS-CoV-2 in human host-cells, and acts in concert with furin, an important enzyme in the synthesis of BNP in CHF, in permeating viral functionality along TMPRSST2. ADAM17 governs ACE2 shedding from cell membranes. Therefore, the present study was designed to investigate the expression of ACE2, furin, TMPRSS2 and ADAM17 in the lung, heart and kidneys of rats with CHF to understand the exaggerated susceptibility of clinical CHF to COVID-19 disease. Heart failure was induced in male Sprague Dawley rats by the creation of a surgical aorto-caval fistula. Sham-operated rats served as controls. One week after surgery, the animals were subdivided into compensated and decompensated CHF according to urinary sodium excretion. Both groups and their controls were sacrificed, and their hearts, lungs and kidneys were harvested for assessment of tissue remodelling and ACE2, furin, TMPRSS2 and ADAM17 immunoreactivity, expression and immunohistochemical staining. ACE2 immunoreactivity and mRNA levels increased in pulmonary, cardiac and renal tissues of compensated, but not in decompensated CHF. Furin immunoreactivity was increased in both compensated and decompensated CHF in the pulmonary, cardiac tissues and renal cortex but not in the medulla. Interestingly, both the expression and abundance of pulmonary, cardiac and renal TMPRSS2 decreased in CHF in correlation with the severity of the disease. Pulmonary, cardiac and renal ADAM17 mRNA levels were also downregulated in decompensated CHF. Circulating furin levels increased in proportion to CHF severity, whereas plasma ACE2 remained unchanged. In summary, ACE2 and furin are overexpressed in the pulmonary, cardiac and renal tissues of compensated and to a lesser extent of decompensated CHF as compared with their sham controls. The increased expression of the ACE2 in heart failure may serve as a compensatory mechanism, counterbalancing the over-activity of the deleterious isoform, ACE. Downregulated ADAM17 might enhance membranal ACE2 in COVID-19 disease, whereas the suppression of TMPRSS2 in CHF argues against its involvement in the exaggerated susceptibility of CHF patients to SARS-CoV2.


Subject(s)
ADAM17 Protein/metabolism , Furin/metabolism , Heart Failure/metabolism , Serine Endopeptidases/metabolism , ADAM17 Protein/genetics , Animals , /metabolism , Disease Models, Animal , Gene Expression , Heart Failure/genetics , Humans , Kidney/metabolism , Lung/metabolism , Male , Myocardium/metabolism , Rats, Sprague-Dawley , Renin-Angiotensin System/physiology , /physiology , Serine Endopeptidases/genetics
20.
EBioMedicine ; 65: 103255, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1116567

ABSTRACT

BACKGROUND: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.


Subject(s)
Antiviral Agents/pharmacology , Esters/pharmacology , Guanidines/pharmacology , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , HEK293 Cells , Humans , Lung/pathology , Lung/virology , Membrane Proteins/biosynthesis , Molecular Dynamics Simulation , Serine Endopeptidases/biosynthesis , Serine Proteases/biosynthesis , Vero Cells , Virus Activation/drug effects , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL