Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 673
Filter
1.
Sci Rep ; 12(1): 11763, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1991656

ABSTRACT

Besides typical respiratory symptoms, COVID-19 patients also have gastrointestinal symptoms. Studies focusing on the gastrointestinal tumors derived from gastrointestinal tissues have raised a question whether these tumors might express higher levels of SARS-CoV-2 associated genes and therefore patients diagnosed with GI cancers may be more susceptible to the infection. In this study, we have analyzed the expression of SARS-CoV-2 associated genes and their co-expressions in gastrointestinal solid tumors, cancer cell lines and patient-derived organoids relative to their normal counterparts. Moreover, we have found increased co-expression of TMPRSS2-TMPRSS4 in gastrointestinal cancers suggesting that SARS-CoV-2 viral infection known to be mediated by this protease pair might facilitate the effects of viral infection in GI cancer patients. Further, our findings also demonstrate that TRIM31 expression is upregulated in gastrointestinal tumors, while the inhibition of TRIM31 significantly altered viral replication and viral processes associated with cellular pathways in gastrointestinal cancer samples. Taken together, these findings indicate that in addition to the co-expression of TMPRSS2-TMPRSS4 protease pair in GI cancers, TRIM31 expression is positively correlated with this pair and TRIM31 may play a role in providing an increased susceptibility in GI cancer patients to be infected with SARS-CoV-2 virus.


Subject(s)
COVID-19 , Gastrointestinal Neoplasms , Angiotensin-Converting Enzyme 2 , COVID-19/genetics , Gastrointestinal Neoplasms/genetics , Gene Expression , Humans , Membrane Proteins/metabolism , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
2.
Eur J Med Chem ; 240: 114585, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-1982958

ABSTRACT

The RNA viruses SARS-CoV-2 and dengue pose a major threat to human health worldwide and their proteases (Mpro; NS2B/NS3) are considered as promising targets for drug development. We present the synthesis and biological evaluation of novel benzoxaborole inhibitors of these two proteases. The most active compound achieves single-digit micromolar activity against SARS-CoV-2 Mpro in a biochemical assay. The most active substance against dengue NS2B/NS3 protease has submicromolar activity in cells (EC50 0.54 µM) and inhibits DENV-2 replication in cell culture. Most benzoxaboroles had no relevant cytotoxicity or significant off-target inhibition. Furthermore, the class demonstrated passive membrane penetration and stability against the evaluated proteases. This compound class may contribute to the development of antiviral agents with activity against DENV or SARS-CoV-2.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Antiviral Agents/chemistry , Dengue/drug therapy , Dengue Virus/metabolism , Humans , Peptide Hydrolases , Protease Inhibitors/chemistry , SARS-CoV-2 , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins
3.
Front Biosci (Landmark Ed) ; 27(7): 217, 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-1965058

ABSTRACT

BACKGROUND: SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is enveloped by four structural proteins. The entry of the virus into the host cells is mediated by spike protein binding to the angiotensin converting enzyme 2 (ACE2) and proteolytic cleavage by transmembrane protease serine 2 (TMPRSS2). In this study, we analyzed the expression of the ACE2 receptor and TMPRSS2 in cases under investigation for SARS-CoV-2 infection. METHODS: The study was carried out using the viral transport medium of consecutive nasopharyngeal swabs from 300 people under examination for SARS-CoV-2 infection. All samples underwent the SARS-CoV-2 transcriptase-mediated amplification assay (Procleix® SARS-CoV-2) to detect the virus. Immunocytochemistry was used in each sample to detect the presence of the SARS-CoV-2 nucleoprotein, the ACE2 receptor, and TMPRSS2. RESULTS: An immunocytochemical study with monoclonal antibody against SARS-CoV-2 viral nucleoprotein showed positivity in squamous cells. ACE2 were not detected in the squamous cells obtained from the nasopharyngeal samples. CONCLUSIONS: SARS-CoV-2 predominantly localizes to squamous cells in cytology samples of patients with positive transcriptase-mediated amplification SARS-CoV-2 assay results. The immunocytochemical negativity for ACE2 evidenced in the present study could be related to the cellular heterogeneity present in the nasopharyngeal smear samples and could be related to variations at the genomic level. Our results suggest that SARS-CoV-2 might be present in the nasopharyngeal region because viral cell junctions are weaker. This facilitates viral concentration, infective capacity and migration to specific organs, where SARS-CoV-2 infects target cells by binding to their receptors and then entering.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , COVID-19/diagnosis , Humans , Nasopharynx/metabolism , Proteolysis , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
4.
Signal Transduct Target Ther ; 7(1): 251, 2022 07 23.
Article in English | MEDLINE | ID: covidwho-1956394
5.
Biomolecules ; 12(7)2022 07 15.
Article in English | MEDLINE | ID: covidwho-1938685

ABSTRACT

Protease inhibitors are widely studied since the unrestricted activity of proteases can cause extensive organ lesions. In particular, elastase activity is involved in the pathophysiology of acute lung injury, for example during SARS-CoV-2 infection, while serine proteases and thrombin-like proteases are involved in the development and/or pathology of the nervous system. Natural protease inhibitors have the advantage to be reversible and with few side effects and thus are increasingly considered as new drugs. Kunitz-type protease inhibitors (KTPIs), reported in the venom of various organisms, such as wasps, spiders, scorpions, and snakes, have been studied for their potent anticoagulant activity and widespread protease inhibitor activity. Putative KTPI anticoagulants have been identified in transcriptomic resources obtained for two blister beetle species, Lydus trimaculatus and Mylabris variabilis. The KTPIs of L. trimaculatus and M. variabilis were characterized by combined transcriptomic and bioinformatics methodologies. The full-length mRNA sequences were divided on the base of the sequence of the active sites of the putative proteins. In silico protein structure analyses of each group of translational products show the biochemical features of the active sites and the potential protease targets. Validation of these genes is the first step for considering these molecules as new drugs for use in medicine.


Subject(s)
COVID-19 , Coleoptera , Animals , Coleoptera/genetics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Serine Proteases
6.
Commun Biol ; 5(1): 681, 2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1927105

ABSTRACT

The transmembrane serine protease 2 (TMPRSS2) primes the SARS-CoV-2 Spike (S) protein for host cell entry and represents a promising target for COVID-19 therapy. Here we describe the in silico development and in vitro characterization of peptidomimetic TMPRSS2 inhibitors. Molecular docking studies identified peptidomimetic binders of the TMPRSS2 catalytic site, which were synthesized and coupled to an electrophilic serine trap. The compounds inhibit TMPRSS2 while demonstrating good off-target selectivity against selected coagulation proteases. Lead candidates are stable in blood serum and plasma for at least ten days. Finally, we show that selected peptidomimetics inhibit SARS-CoV-2 Spike-driven pseudovirus entry and authentic SARS-CoV-2 infection with comparable efficacy as camostat mesylate. The peptidomimetic TMPRSS2 inhibitors also prevent entry of recent SARS-CoV-2 variants of concern Delta and Omicron BA.1. In sum, our study reports antivirally active and stable TMPRSS2 inhibitors with prospects for further preclinical and clinical development as antiviral agents against SARS-CoV-2 and other TMPRSS2-dependent viruses.


Subject(s)
COVID-19 , Peptidomimetics , COVID-19/drug therapy , Cell Culture Techniques , Humans , Molecular Docking Simulation , Peptidomimetics/pharmacology , SARS-CoV-2 , Serine Endopeptidases/genetics
7.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1917635

ABSTRACT

COVID-19, a pandemic caused by the virus SARS-CoV-2, has spread globally, necessitating the search for antiviral compounds. Transmembrane protease serine 2 (TMPRSS2) is a cell surface protease that plays an essential role in SARS-CoV-2 infection. Therefore, researchers are searching for TMPRSS2 inhibitors that can be used for the treatment of COVID-19. As such, in this study, based on the crystal structure, we targeted the active site of TMPRSS2 for virtual screening of compounds in the FDA database. Then, we screened lumacaftor and ergotamine, which showed strong binding ability, using 100 ns molecular dynamics simulations to study the stability of the protein-ligand binding process, the flexibility of amino acid residues, and the formation of hydrogen bonds. Subsequently, we calculated the binding free energy of the protein-ligand complex by the MM-PBSA method. The results show that lumacaftor and ergotamine interact with residues around the TMPRSS2 active site, and reached equilibrium in the 100 ns molecular dynamics simulations. We think that lumacaftor and ergotamine, which we screened through in silico studies, can effectively inhibit the activity of TMPRSS2. Our findings provide a basis for subsequent in vitro experiments, having important implications for the development of effective anti-COVID-19 drugs.


Subject(s)
COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Ergotamines , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2 , Serine Endopeptidases
8.
Viruses ; 14(7)2022 06 23.
Article in English | MEDLINE | ID: covidwho-1911648

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, causing surges, breakthrough infections, and devastating losses-underscoring the importance of identifying SARS-CoV-2 antivirals. A simple, accessible human cell culture model permissive to SARS-CoV-2 variants is critical for identifying and assessing antivirals in a high-throughput manner. Although human alveolar A549 cells are a valuable model for studying respiratory virus infections, they lack two essential host factors for SARS-CoV-2 infection: angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). SARS-CoV-2 uses the ACE2 receptor for viral entry and TMPRSS2 to prime the SARS-CoV-2 spike protein, both of which are negligibly expressed in A549 cells. Here, we report the generation of a suitable human cell line for SARS-CoV-2 studies by transducing human ACE2 and TMPRSS2 into A549 cells. We show that subclones highly expressing ACE2 and TMPRSS2 ("ACE2plus" and the subclone "ACE2plusC3") are susceptible to infection with SARS-CoV-2, including the delta and omicron variants. These subclones express more ACE2 and TMPRSS2 transcripts than existing commercial A549 cells engineered to express ACE2 and TMPRSS2. Additionally, the antiviral drugs EIDD-1931, remdesivir, nirmatrelvir, and nelfinavir strongly inhibit SARS-CoV-2 variants in our infection model. Our data show that ACE2plusC3 cells are highly permissive to SARS-CoV-2 infection and can be used to identify anti-SARS-CoV-2 drugs.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
PLoS One ; 17(6): e0270609, 2022.
Article in English | MEDLINE | ID: covidwho-1910688

ABSTRACT

Covid-19 progression shows sex-dependent features. It is hypothesized that a better Covid-19 survival rate in females can be attributed to the presence of higher 17ß-estradiol (E2) levels in women than in men. Virus SARS-CoV-2 is enabled to enter the cell with the use of angiotensin converting enzyme 2 (ACE2). The expression of several renin-angiotensin system components has been shown to exert a rhythmic pattern, and a role of the circadian system in their regulation has been implicated. Therefore, the aim of the study is to elucidate possible interference between E2 signalling and the circadian system in the regulation of the expression of ACE2 mRNA and functionally related molecules. E2 was administered at a dosage of 40 µg/kg/day for 7 days to male Wistar rats, and sampling of the lungs and colon was performed during a 24-h cycle. The daily pattern of expression of molecules facilitating SARS-CoV-2 entry into the cell, clock genes and E2 receptors was analysed. As a consequence of E2 administration, a rhythm in ACE2 and TMPRSS2 mRNA expression was observed in the lungs but not in the colon. ADAM17 mRNA expression showed a pronounced rhythmic pattern in both tissues that was not influenced by E2 treatment. ESR1 mRNA expression exerted a rhythmic pattern, which was diminished by E2 treatment. The influence of E2 administration on ESR2 and GPER1 mRNA expression was greater in the lungs than in the colon as a significant rhythm in ESR2 and GPER1 mRNA expression appeared only in the lungs after E2 treatment. E2 administration also increased the amplitude of bmal1 expression in the lungs, which implicates altered functioning of peripheral oscillators in response to E2 treatment. The daily pattern of components of the SARS-CoV-2 entrance pathway and their responsiveness to E2 should be considered in the timing of pharmacological therapy for Covid-19.


Subject(s)
ADAM17 Protein , Angiotensin-Converting Enzyme 2 , COVID-19 , Colon , Estradiol , Lung , Receptors, Estradiol , ADAM17 Protein/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/drug therapy , COVID-19/virology , Colon/drug effects , Colon/metabolism , Estradiol/pharmacology , Female , Lung/metabolism , Male , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Receptors, Estradiol/genetics , Receptors, Estradiol/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Transcription, Genetic/drug effects , Virus Internalization
10.
Front Endocrinol (Lausanne) ; 13: 862789, 2022.
Article in English | MEDLINE | ID: covidwho-1896674

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although males and females are at equivalent risk of infection, males are more prone to develop a higher severity disease, regardless of age. The factors that mediate susceptibility to SARS-CoV-2 and transmission are still under investigation. A potential role has been attributed to differences in the immune systems response to viral antigens between males and females as well as to different regulatory actions played by sex-related hormones on the two crucial molecular effectors for SARS-CoV-2 infection, TMPRSS2 and ACE2. While few and controversial data about TMPRSS2 transcript regulation in lung cells are emerging, no data on protein expression and activity of TMPRSS2 have been reported. Aim of the present study was to search for possible modulatory actions played by sex-related hormones on TMPRSS2 and ACE2 expression in Calu-3 cells, to test the effects of sex-steroids on the expression of the 32kDa C-term fragment derived from autocatalitic cleavage of TMPRSS2 and its impact on priming of transiently transfected spike protein. Cells were stimulated with different concentrations of methyltrienolone (R1881) or estradiol for 30 h. No difference in mRNA and protein expression levels of full length TMPRSS2 was observed. However, the 32 kDa cleaved serine protease domain was increased after 100 nM R1881 (+2.36 ± 1.13 fold-increase vs control untreated cells, p < 0.05) and 10 nM estradiol (+1.90 ± 0.64, fold-increase vs control untreated cells, p < 0.05) treatment. Both R1881 and estradiol significantly increased the activating proteolytic cleavage of SARS-CoV-2 Spike (S) transfected in Calu-3 cells (+1.76 ± 0.18 and +1.99±,0.76 increase in S cleavage products at R1881 100nM and 10 nM estradiol treatment, respectively, p < 0.001 and p < 0.05 vs control untreated cells, respectively). Finally, no significant differences in ACE2 expression were observed between hormones-stimulated cells and untreated control cells. Altogether, these data suggest that both male and female sex-related hormones are able to induce a proteolityc activation of TMPRSS2, thus promoting viral infection, in agreement with the observation that males and females are equally infected by SARS-CoV-2.


Subject(s)
COVID-19 , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/genetics , COVID-19/enzymology , Cell Line , Estradiol/pharmacology , Female , Humans , Lung/metabolism , Male , Metribolone/pharmacology , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
11.
Antimicrob Agents Chemother ; 66(7): e0043922, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1891730

ABSTRACT

An essential step in the infection life cycle of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the proteolytic activation of the viral spike (S) protein, which enables membrane fusion and entry into the host cell. Two distinct classes of host proteases have been implicated in the S protein activation step: cell-surface serine proteases, such as the cell-surface transmembrane protease, serine 2 (TMPRSS2), and endosomal cathepsins, leading to entry through either the cell-surface route or the endosomal route, respectively. In cells expressing TMPRSS2, inhibiting endosomal proteases using nonspecific cathepsin inhibitors such as E64d or lysosomotropic compounds such as hydroxychloroquine fails to prevent viral entry, suggesting that the endosomal route of entry is unimportant; however, mechanism-based toxicities and poor efficacy of these compounds confound our understanding of the importance of the endosomal route of entry. Here, to identify better pharmacological agents to elucidate the role of the endosomal route of entry, we profiled a panel of molecules identified through a high-throughput screen that inhibit endosomal pH and/or maturation through different mechanisms. Among the three distinct classes of inhibitors, we found that inhibiting vacuolar-ATPase using the macrolide bafilomycin A1 was the only agent able to potently block viral entry without associated cellular toxicity. Using both pseudotyped and authentic virus, we showed that bafilomycin A1 inhibits SARS-CoV-2 infection both in the absence and presence of TMPRSS2. Moreover, synergy was observed upon combining bafilomycin A1 with Camostat, a TMPRSS2 inhibitor, in neutralizing SARS-CoV-2 entry into TMPRSS2-expressing cells. Overall, this study highlights the importance of the endosomal route of entry for SARS-CoV-2 and provides a rationale for the generation of successful intervention strategies against this virus that combine inhibitors of both entry pathways.


Subject(s)
COVID-19 , Vacuolar Proton-Translocating ATPases , COVID-19/drug therapy , Endosomes/metabolism , Humans , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
12.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: covidwho-1876430

ABSTRACT

By the end of December 2021, coronavirus disease 2019 (COVID-19) produced more than 271 million cases and 5.3 million deaths. Although vaccination is an effective strategy for pandemic control, it is not yet equally available in all countries. Therefore, identification of prognostic biomarkers remains crucial to manage COVID-19 patients. The aim of this study was to evaluate predictors of COVID-19 severity previously proposed. Clinical and demographic characteristics and 120 single-nucleotide polymorphisms were analyzed from 817 patients with COVID-19, who attended the emergency department of the Hospital Universitario de La Princesa during March and April 2020. The main outcome was a modified version of the 7-point World Health Organization (WHO) COVID-19 severity scale (WHOCS); both in the moment of the first hospital examination (WHOCS-1) and of the severest WHOCS score (WHOCS-2). The TMPRSS2 rs75603675 genotype (OR = 0.586), dyslipidemia (OR = 2.289), sex (OR = 0.586), and the Charlson Comorbidity Index (OR = 1.126) were identified as the main predictors of disease severity. Consequently, these variables might influence COVID-19 severity and could be used as predictors of disease development.


Subject(s)
COVID-19 , COVID-19/diagnosis , Comorbidity , Female , Humans , Male , Serine , Serine Endopeptidases/genetics , Severity of Illness Index , Sex Factors
13.
ACS Infect Dis ; 8(6): 1191-1203, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1873405

ABSTRACT

SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.


Subject(s)
COVID-19 , Percutaneous Coronary Intervention , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning/methods , Humans , Pandemics , SARS-CoV-2 , Serine Endopeptidases
14.
Front Immunol ; 13: 872047, 2022.
Article in English | MEDLINE | ID: covidwho-1855361

ABSTRACT

An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines , Furin/genetics , Furin/metabolism , Humans , Immunity, Cellular , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Spike Glycoprotein, Coronavirus/immunology
15.
BMC Bioinformatics ; 23(1): 180, 2022 May 16.
Article in English | MEDLINE | ID: covidwho-1846793

ABSTRACT

BACKGROUND: The Transmembrane Serine Protease 2 (TMPRSS2) of human cell plays a significant role in proteolytic cleavage of SARS-Cov-2 coronavirus spike protein and subsequent priming to the receptor ACE2. Approaching TMPRSS2 as a therapeutic target for the inhibition of SARS-Cov-2 infection is highly promising. Hence, in the present study, we docked the binding efficacy of ten naturally available phyto compounds with known anti-viral potential with TMPRSS2. The aim is to identify the best phyto compound with a high functional affinity towards the active site of the TMPRSS2 with the aid of two different docking software. Molecular Dynamic Simulations were performed to analyse the conformational space of the binding pocket of the target protein with selected molecules. RESULTS: Docking analysis using PyRx version 0.8 along with AutoDockVina reveals that among the screened phyto compounds, Genistein shows the maximum binding affinity towards the hydrophobic substrate-binding site of TMPRSS2 with three hydrogen bonds interaction ( - 7.5 kcal/mol). On the other hand, molecular docking analysis using Schrodinger identified Quercetin as the most potent phyto compound with a maximum binding affinity towards the hydrophilic catalytic site of TMPRSS2 ( - 7.847 kcal/mol) with three hydrogen bonds interaction. The molecular dynamics simulation reveals that the Quercetin-TMPRSS complex is stable until 50 ns and forms stable interaction with the protein ( - 22.37 kcal/mol of MM-PBSA binding free energy). Genistein creates a weak interaction with the loop residues and hence has an unstable binding and exits from the binding pocket. CONCLUSION: The compounds, Quercetin and Genistein, can inhibit the TMPRSS2 guided priming of the spike protein. The compounds could reduce the interaction of the host cell with the type I transmembrane glycoprotein to prevent the entry of the virus. The critical finding is that compared to Genistein, Quercetin exhibits higher binding affinity with the catalytic unit of TMPRSS2 and forms a stable complex with the target. Thus, enhancing our innate immunity by consuming foods rich in Quercetin and Genistein or developing a novel drug in the combination of Quercetin and Genistein could be the brilliant choices to prevent SARS-Cov-2 infection when we consider the present chaos associated with vaccines and anti-viral medicines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antiviral Agents/pharmacology , COVID-19/drug therapy , Genistein/pharmacology , Humans , Molecular Docking Simulation , Quercetin/pharmacology , SARS-CoV-2 , Serine Endopeptidases , Virus Internalization
16.
BJOG ; 129(2): 256-266, 2022 01.
Article in English | MEDLINE | ID: covidwho-1831884

ABSTRACT

BACKGROUND: Pregnant women have been identified as a potentially at-risk group concerning COVID-19 infection, but little is known regarding the susceptibility of the fetus to infection. Co-expression of ACE2 and TMPRSS2 has been identified as a prerequisite for infection, and expression across different tissues is known to vary between children and adults. However, the expression of these proteins in the fetus is unknown. METHODS: We performed a retrospective analysis of a single cell data repository. The data were then validated at both gene and protein level by performing RT-qPCR and two-colour immunohistochemistry on a library of second-trimester human fetal tissues. FINDINGS: TMPRSS2 is present at both gene and protein level in the predominantly epithelial fetal tissues analysed. ACE2 is present at significant levels only in the fetal intestine and kidney, and is not expressed in the fetal lung. The placenta also does not co-express the two proteins across the second trimester or at term. INTERPRETATION: This dataset indicates that the lungs are unlikely to be a viable route of SARS-CoV2 fetal infection. The fetal kidney, despite presenting both the proteins required for the infection, is anatomically protected from the exposure to the virus. However, the gastrointestinal tract is likely to be susceptible to infection due to its high co-expression of both proteins, as well as its exposure to potentially infected amniotic fluid. TWEETABLE ABSTRACT: This work provides detailed mechanistic insight into the relative protection & vulnerabilities of the fetus & placenta to SARS-CoV-2 infection by scRNAseq & protein expression analysis for ACE2 & TMPRSS2. The findings help to explain the low rate of vertical transmission.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Gene Expression Profiling , Placenta/metabolism , Serine Endopeptidases/genetics , Adult , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Databases, Nucleic Acid , Disease Susceptibility/metabolism , Female , Fetal Research , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Genetic Testing/methods , Gestational Age , Humans , Immunohistochemistry , Infectious Disease Transmission, Vertical , Pregnancy , Protective Factors , Ribonucleoproteins, Small Cytoplasmic/analysis , SARS-CoV-2/physiology
17.
mBio ; 13(3): e0089222, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1832359

ABSTRACT

The coronavirus disease 2019, COVID-19, is a complex disease with a wide range of symptoms from asymptomatic infections to severe acute respiratory syndrome with lethal outcome. Individual factors such as age, sex, and comorbidities increase the risk for severe infections, but other aspects, such as genetic variations, are also likely to affect the susceptibility to SARS-CoV-2 infection and disease severity. Here, we used a human 3D lung cell model based on primary cells derived from multiple donors to identity host factors that regulate SARS-CoV-2 infection. With a transcriptomics-based approach, we found that less susceptible donors show a higher expression level of serine protease inhibitors SERPINA1, SERPINE1, and SERPINE2, identifying variation in cellular serpin levels as restricting host factors for SARS-CoV-2 infection. We pinpoint their antiviral mechanism of action to inhibition of the cellular serine protease, TMPRSS2, thereby preventing cleavage of the viral spike protein and TMPRSS2-mediated entry into the target cells. By means of single-cell RNA sequencing, we further locate the expression of the individual serpins to basal, ciliated, club, and goblet cells. Our results add to the importance of genetic variations as determinants for SARS-CoV-2 susceptibility and suggest that genetic deficiencies of cellular serpins might represent risk factors for severe COVID-19. Our study further highlights TMPRSS2 as a promising target for antiviral intervention and opens the door for the usage of locally administered serpins as a treatment against COVID-19. IMPORTANCE Identification of host factors affecting individual SARS-CoV-2 susceptibility will provide a better understanding of the large variations in disease severity and will identify potential factors that can be used, or targeted, in antiviral drug development. With the use of an advanced lung cell model established from several human donors, we identified cellular protease inhibitors, serpins, as host factors that restrict SARS-CoV-2 infection. The antiviral mechanism was found to be mediated by the inhibition of a serine protease, TMPRSS2, which results in a blockage of viral entry into target cells. Potential treatments with these serpins would not only reduce the overall viral burden in the patients, but also block the infection at an early time point, reducing the risk for the hyperactive immune response common in patients with severe COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Serine Proteinase Inhibitors , Serpins , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans , Plasminogen Activator Inhibitor 1 , SARS-CoV-2 , Serine Endopeptidases , Serine Proteinase Inhibitors/pharmacology , Serpin E2 , Serpins/genetics , Virus Internalization , alpha 1-Antitrypsin
18.
J Oral Biosci ; 64(2): 229-236, 2022 06.
Article in English | MEDLINE | ID: covidwho-1804593

ABSTRACT

OBJECTIVES: The oral cavity is one of the main entry sites for SARS-CoV-2. Gingival keratinocytes express transmembrane serine protease 2 (TMPRSS2), responsible for priming the SARS-CoV-2 spike protein. We investigated whether periodontitis increased the expression of TMPRSS2. METHODS: To investigate gene expression in periodontitis, we analyzed the expression of specific genes from (1) the Gene Expression Omnibus (GEO) dataset of 247 human gingival tissues and (2) an experimentally-induced periodontitis mouse model. Human gingival tissues with or without periodontitis were immunohistochemically stained using an anti-TMPRSS2 antibody. Analysis of the TMPRSS2 promoter was performed using a ChIP-Atlas dataset. TMPRSS2 expression was detected in cultured human keratinocytes using quantitative reverse transcription (qRT)-PCR and Western blot analysis. RESULTS: GEO dataset analysis and an experimentally-induced periodontitis model revealed increased expression of TMPRSS2 in periodontitis gingiva. The keratinocyte cell membrane in periodontitis gingiva was strongly immunohistochemically stained for TMPRSS2. Using ChIP-Atlas and GEO datasets, we screened for transcription factors that bind to the TMPRSS2 promoter region. We found one candidate, estrogen receptor 1 (ESR1), highly expressed in periodontitis gingiva. Analysis of the GEO dataset revealed a correlation between ESR1 and TMPRSS2 expression in gingival tissues. An ESR1 ligand induced TMPRSS2 expression in cultured keratinocytes. CONCLUSIONS: Periodontitis increases TMPRSS2 expression in the cell membrane of gingival keratinocytes.


Subject(s)
COVID-19 , Periodontitis , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/genetics , Gingiva , Humans , Mice , Peptide Hydrolases , SARS-CoV-2 , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus
19.
Cells ; 11(8)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1785538

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has lasted for more than two years. Despite the presence of very effective vaccines, the number of virus variants that escape neutralizing antibodies is growing. Thus, there is still a need for effective antiviral treatments that target virus replication independently of the circulating variant. Here, we show for the first time that deficiency or pharmacological inhibition of the cellular lysine-methyltransferase SMYD2 decreases TMPRSS2 expression on both mRNA and protein levels. SARS-CoV-2 uses TMPRSS2 for priming its spike protein to infect target cells. Treatment of cultured cells with the SMYD2 inhibitors AZ505 or BAY598 significantly inhibited viral replication. In contrast, treatment of Vero E6 cells, which do not express detectable amounts of TMPRSS2, had no effect on SARS-CoV-2 infection. Moreover, by generating a recombinant reporter virus that expresses the spike protein of the Delta variant of SARS-CoV-2, we demonstrate that BAY598 exhibits similar antiviral activity against this variant of concern. In summary, SMYD2 inhibition downregulates TMPRSS2 and blocks viral replication. Targeting cellular SMYD2 represents a promising tool to curtail SARS-CoV-2 infection.


Subject(s)
COVID-19 , Epithelial Cells , Histone-Lysine N-Methyltransferase , Serine Endopeptidases , Antiviral Agents/pharmacology , COVID-19/pathology , Epithelial Cells/metabolism , Epithelial Cells/virology , Histone-Lysine N-Methyltransferase/genetics , Humans , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
20.
Microbiol Spectr ; 10(2): e0216721, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1784773

ABSTRACT

The SARS-CoV-2 coronavirus, which causes COVID-19, uses a viral surface spike protein for host cell entry and the human cell-surface transmembrane serine protease, TMPRSS2, to process the spike protein. Camostat mesylate, an orally available and clinically used serine protease inhibitor, inhibits TMPRSS2, supporting clinical trials to investigate its use in COVID-19. A one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) model for camostat and the active metabolite FOY-251 was developed, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. The model predicts that 95% inhibition of TMPRSS2 is required for 50% inhibition of viral entry efficiency. For camostat 200 mg dosed four times daily, 90% inhibition of TMPRSS2 is predicted to occur but with only about 40% viral entry inhibition. For 3-fold higher camostat dosing, marginal improvement of viral entry rate inhibition, up to 54%, is predicted. Because respiratory tract viral load may be associated with negative outcome, even modestly reducing viral entry and respiratory tract viral load may reduce disease progression. This modeling also supports medicinal chemistry approaches to enhancing PK/PD and potency of the camostat molecule. IMPORTANCE Strategies to repurpose already-approved drugs for the treatment of COVID-19 has been attractive since the beginning of the pandemic. Camostat mesylate, a serine protease inhibitor approved in Japan for the treatment of acute exacerbations of chronic pancreatitis, inhibits TMPRSS1, a host cell surface serine protease essential for SARS-CoV-2 viral entry. In vitro experiments provided data suggesting that camostat might be effective in the treatment of COVID-19. Multiple clinical trials were planned to test the hypothesis that camostat would be beneficial for treating COVID-19 (for example, clinicaltrials.gov, NCT04353284). The present work used a one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) mathematical model for camostat and the active metabolite FOY-251, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. This work is valuable to guide further development of camostat mesylate and possible medicinal chemistry derivatives for the treatment of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/drug therapy , Clinical Studies as Topic , Esters , Guanidines , Humans , Serine Proteases , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL