Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cochrane Database Syst Rev ; 6: CD013652, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-981322

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify current infection, rule out infection, identify people in need of care escalation, or to test for past infection and immune response. Serology tests to detect the presence of antibodies to SARS-CoV-2 aim to identify previous SARS-CoV-2 infection, and may help to confirm the presence of current infection. OBJECTIVES: To assess the diagnostic accuracy of antibody tests to determine if a person presenting in the community or in primary or secondary care has SARS-CoV-2 infection, or has previously had SARS-CoV-2 infection, and the accuracy of antibody tests for use in seroprevalence surveys. SEARCH METHODS: We undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 27 April 2020. SELECTION CRITERIA: We included test accuracy studies of any design that evaluated antibody tests (including enzyme-linked immunosorbent assays, chemiluminescence immunoassays, and lateral flow assays) in people suspected of current or previous SARS-CoV-2 infection, or where tests were used to screen for infection. We also included studies of people either known to have, or not to have SARS-CoV-2 infection. We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR) and clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS: We assessed possible bias and applicability of the studies using the QUADAS-2 tool. We extracted 2x2 contingency table data and present sensitivity and specificity for each antibody (or combination of antibodies) using paired forest plots. We pooled data using random-effects logistic regression where appropriate, stratifying by time since post-symptom onset. We tabulated available data by test manufacturer. We have presented uncertainty in estimates of sensitivity and specificity using 95% confidence intervals (CIs). MAIN RESULTS: We included 57 publications reporting on a total of 54 study cohorts with 15,976 samples, of which 8526 were from cases of SARS-CoV-2 infection. Studies were conducted in Asia (n = 38), Europe (n = 15), and the USA and China (n = 1). We identified data from 25 commercial tests and numerous in-house assays, a small fraction of the 279 antibody assays listed by the Foundation for Innovative Diagnostics. More than half (n = 28) of the studies included were only available as preprints. We had concerns about risk of bias and applicability. Common issues were use of multi-group designs (n = 29), inclusion of only COVID-19 cases (n = 19), lack of blinding of the index test (n = 49) and reference standard (n = 29), differential verification (n = 22), and the lack of clarity about participant numbers, characteristics and study exclusions (n = 47). Most studies (n = 44) only included people hospitalised due to suspected or confirmed COVID-19 infection. There were no studies exclusively in asymptomatic participants. Two-thirds of the studies (n = 33) defined COVID-19 cases based on RT-PCR results alone, ignoring the potential for false-negative RT-PCR results. We observed evidence of selective publication of study findings through omission of the identity of tests (n = 5). We observed substantial heterogeneity in sensitivities of IgA, IgM and IgG antibodies, or combinations thereof, for results aggregated across different time periods post-symptom onset (range 0% to 100% for all target antibodies). We thus based the main results of the review on the 38 studies that stratified results by time since symptom onset. The numbers of individuals contributing data within each study each week are small and are usually not based on tracking the same groups of patients over time. Pooled results for IgG, IgM, IgA, total antibodies and IgG/IgM all showed low sensitivity during the first week since onset of symptoms (all less than 30.1%), rising in the second week and reaching their highest values in the third week. The combination of IgG/IgM had a sensitivity of 30.1% (95% CI 21.4 to 40.7) for 1 to 7 days, 72.2% (95% CI 63.5 to 79.5) for 8 to 14 days, 91.4% (95% CI 87.0 to 94.4) for 15 to 21 days. Estimates of accuracy beyond three weeks are based on smaller sample sizes and fewer studies. For 21 to 35 days, pooled sensitivities for IgG/IgM were 96.0% (95% CI 90.6 to 98.3). There are insufficient studies to estimate sensitivity of tests beyond 35 days post-symptom onset. Summary specificities (provided in 35 studies) exceeded 98% for all target antibodies with confidence intervals no more than 2 percentage points wide. False-positive results were more common where COVID-19 had been suspected and ruled out, but numbers were small and the difference was within the range expected by chance. Assuming a prevalence of 50%, a value considered possible in healthcare workers who have suffered respiratory symptoms, we would anticipate that 43 (28 to 65) would be missed and 7 (3 to 14) would be falsely positive in 1000 people undergoing IgG/IgM testing at days 15 to 21 post-symptom onset. At a prevalence of 20%, a likely value in surveys in high-risk settings, 17 (11 to 26) would be missed per 1000 people tested and 10 (5 to 22) would be falsely positive. At a lower prevalence of 5%, a likely value in national surveys, 4 (3 to 7) would be missed per 1000 tested, and 12 (6 to 27) would be falsely positive. Analyses showed small differences in sensitivity between assay type, but methodological concerns and sparse data prevent comparisons between test brands. AUTHORS' CONCLUSIONS: The sensitivity of antibody tests is too low in the first week since symptom onset to have a primary role for the diagnosis of COVID-19, but they may still have a role complementing other testing in individuals presenting later, when RT-PCR tests are negative, or are not done. Antibody tests are likely to have a useful role for detecting previous SARS-CoV-2 infection if used 15 or more days after the onset of symptoms. However, the duration of antibody rises is currently unknown, and we found very little data beyond 35 days post-symptom onset. We are therefore uncertain about the utility of these tests for seroprevalence surveys for public health management purposes. Concerns about high risk of bias and applicability make it likely that the accuracy of tests when used in clinical care will be lower than reported in the included studies. Sensitivity has mainly been evaluated in hospitalised patients, so it is unclear whether the tests are able to detect lower antibody levels likely seen with milder and asymptomatic COVID-19 disease. The design, execution and reporting of studies of the accuracy of COVID-19 tests requires considerable improvement. Studies must report data on sensitivity disaggregated by time since onset of symptoms. COVID-19-positive cases who are RT-PCR-negative should be included as well as those confirmed RT-PCR, in accordance with the World Health Organization (WHO) and China National Health Commission of the People's Republic of China (CDC) case definitions. We were only able to obtain data from a small proportion of available tests, and action is needed to ensure that all results of test evaluations are available in the public domain to prevent selective reporting. This is a fast-moving field and we plan ongoing updates of this living systematic review.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Antibody Specificity , Coronavirus Infections/epidemiology , False Negative Reactions , False Positive Reactions , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/epidemiology , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , Selection Bias , Sensitivity and Specificity , Serologic Tests/methods , Serologic Tests/standards
2.
Emerg Microbes Infect ; 9(1): 2200-2211, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-787003

ABSTRACT

Serology detection is recognized for its sensitivity in convalescent patients with COVID-19, in comparison with nucleic acid amplification tests (NAATs). This article aimed to evaluate the diagnostic accuracy of serologic methods for COVID-19 based on assay design and post-symptom-onset intervals. Two authors independently searched PubMed, Cochrane library, Ovid, EBSCO for case-control, longitudinal and cohort studies that determined the diagnostic accuracy of serology tests in comparison with NAATs in COVID-19 cases and used QUADAS-2 for quality assessment. Pooled accuracy was analysed using INLA method. A total of 27 studies were included in this meta-analysis, with 4 cohort, 16 case-control and 7 longitudinal studies and 4565 participants. Serology tests had the lowest sensitivity at 0-7 days after symptom onset and the highest at >14 days. TAB had a better sensitivity than IgG or IgM only. Using combined nucleocapsid (N) and spike(S) protein had a better sensitivity compared to N or S protein only. Lateral flow immunoassay (LFIA) had a lower sensitivity than enzyme-linked immunoassay (ELISA) and chemiluminescent immunoassay (CLIA). Serology tests will play an important role in the clinical diagnosis for later stage COVID-19 patients. ELISA tests, detecting TAB or targeting combined N and S proteins had a higher diagnostic sensitivity compared to other methods.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Serologic Tests/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Betacoronavirus/immunology , Clinical Laboratory Techniques/standards , Coronavirus Infections/immunology , Humans , Immunoassay/methods , Immunoassay/standards , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Pandemics , Pneumonia, Viral/immunology , Publication Bias , Sensitivity and Specificity , Serologic Tests/standards , Symptom Assessment
3.
Viruses ; 12(7)2020 07 07.
Article in English | MEDLINE | ID: covidwho-639283

ABSTRACT

Standard precautions to minimize the risk of SARS-CoV-2 transmission implies that infected cell cultures and clinical specimens may undergo some sort of inactivation to reduce or abolish infectivity. We evaluated three heat inactivation protocols (56 °C-30 min, 60 °C-60 min and 92 °C-15 min) on SARS-CoV-2 using (i) infected cell culture supernatant, (ii) virus-spiked human sera (iii) and nasopharyngeal samples according to the recommendations of the European norm NF EN 14476-A2. Regardless of the protocol and the type of samples, a 4 Log10 TCID50 reduction was observed. However, samples containing viral loads > 6 Log10 TCID50 were still infectious after 56 °C-30 min and 60 °C-60 min, although infectivity was < 10 TCID50. The protocols 56 °C-30 min and 60 °C-60 min had little influence on the RNA copies detection, whereas 92 °C-15 min drastically reduced the limit of detection, which suggests that this protocol should be avoided for inactivation ahead of molecular diagnostics. Lastly, 56 °C-30 min treatment of serum specimens had a negligible influence on the results of IgG detection using a commercial ELISA test, whereas a drastic decrease in neutralizing titers was observed.


Subject(s)
Betacoronavirus , Containment of Biohazards/methods , Coronavirus Infections/virology , Pneumonia, Viral/virology , Serologic Tests/methods , Virus Inactivation , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Containment of Biohazards/standards , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Hot Temperature , Humans , Neutralization Tests , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Serologic Tests/standards
4.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-760933

ABSTRACT

Currently available COVID-19 antibody tests using enzyme immunoassay (EIA) or immunochromatographic assay have variable sensitivity and specificity. Here, we developed and evaluated a novel microsphere-based antibody assay (MBA) for detecting immunoglobulin G (IgG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (NP) and spike protein receptor binding domain (RBD). The seropositive cutoff value was set using a cohort of 294 anonymous serum specimens collected in 2018. The specificity was assessed using serum specimens collected from organ donors or influenza patients before 2020. Seropositive rate was determined among COVID-19 patients. Time-to-seropositivity and signal-to-cutoff (S/CO) ratio were compared between MBA and EIA. MBA had a specificity of 100% (93/93; 95% confidence interval (CI), 96-100%) for anti-NP IgG, 98.9% (92/93; 95% CI 94.2-100%) for anti-RBD IgG. The MBA seropositive rate for convalescent COVID-19 patients was 89.8% (35/39) for anti-NP IgG and 79.5% (31/39) for anti-RBD IgG. The time-to-seropositivity was shorter with MBA than EIA. MBA could better differentiate between COVID-19 patients and negative controls with higher S/CO ratio for COVID-19 patients, lower S/CO ratio with negative controls and fewer specimens in the equivocal range. MBA is robust, simple and is suitable for clinical microbiology laboratory for the accurate determination of anti-SARS-CoV-2 antibodies for diagnosis, serosurveillance, and vaccine trials.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/blood , Nucleocapsid Proteins/immunology , Pneumonia, Viral/blood , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Child , Child, Preschool , Coronavirus Infections/diagnosis , Female , Humans , Infant , Male , Microspheres , Middle Aged , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Sensitivity and Specificity , Serologic Tests/standards
5.
J Infect Dis ; 222(8): 1280-1288, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-695351

ABSTRACT

BACKGROUND: Robust serological assays are essential for long-term control of the COVID-19 pandemic. Many recently released point-of-care (PoCT) serological assays have been distributed with little premarket validation. METHODS: Performance characteristics for 5 PoCT lateral flow devices approved for use in Australia were compared to a commercial enzyme immunoassay (ELISA) and a recently described novel surrogate virus neutralization test (sVNT). RESULTS: Sensitivities for PoCT ranged from 51.8% (95% confidence interval [CI], 43.1%-60.4%) to 67.9% (95% CI, 59.4%-75.6%), and specificities from 95.6% (95% CI, 89.2%-98.8%) to 100.0% (95% CI, 96.1%-100.0%). ELISA sensitivity for IgA or IgG detection was 67.9% (95% CI, 59.4%-75.6%), increasing to 93.8% (95% CI, 85.0%-98.3%) for samples >14 days post symptom onset. sVNT sensitivity was 60.9% (95% CI, 53.2%-68.4%), rising to 91.2% (95% CI, 81.8%-96.7%) for samples >14 days post symptom onset, with specificity 94.4% (95% CI, 89.2%-97.5%). CONCLUSIONS: Performance characteristics for COVID-19 serological assays were generally lower than those reported by manufacturers. Timing of specimen collection relative to onset of illness or infection is crucial in reporting of performance characteristics for COVID-19 serological assays. The optimal algorithm for implementing serological testing for COVID-19 remains to be determined, particularly in low-prevalence settings.


Subject(s)
Coronavirus Infections/blood , Pneumonia, Viral/blood , Algorithms , Antibodies, Viral/blood , Australia/epidemiology , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Neutralization Tests/methods , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Prevalence , Reverse Transcriptase Polymerase Chain Reaction/methods , Serologic Tests/methods , Serologic Tests/standards
7.
Clin Biochem ; 84: 87-92, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-665002

ABSTRACT

BACKGROUND: Since February 2020, Italian hospitals registered COVID-19 (COronaVIrus Disease 19) cases more often than the rest of the Europe. During this epidemic, health authorities requested swab tests, while seeking new patient paths. METHODS: A dual laboratory approach was evaluated, consisting of patient care reports for viral RNA detection on swabs and rapid serological tests in 516 patients (192 symptomatic or paucisymptomatic and 324 asymptomatic). RESULTS: We found the molecular positive fraction equal to 12% (23/192) among symptomatic/paucisymptomatic (S/P) and 15.4% (50/324) in asymptomatic (As) sets. Among subsets, we observed serologically positive results, corresponding to 35% (8/23) for S/P and 38% (19/50) for As. Among molecular negative cases, we detected specific Immunoglobulin G or M (Ig G or Ig M) positivity in the S/P cohort equal to 6.6% (11/167) and 6% (15/246) in As cases. For indeterminate molecular results, we found S/P serological positivity equal to 100% (1/1) and 54% (13/24) in As patients. We found higher (p < 0.05) seropositivity in older patients (n = 8) among symptomatic and positives for viral RNA (n.23). CONCLUSIONS: It has been observed that a dual approach of serological and molecular tests detects a higher absolute number of disease cases in a pandemic context,which could improve monitoring and health surveillance efficacy. The age-related seropositivity frequency in this study, if confirmed, could enhance the validity of serological tests, especially in older patients.In these subjects, molecular positivity accompanied by serological positivity (distinct for M and G immunoglobulins) should help determine disease status and support decisions related to patient management.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Serologic Tests/standards , Aged , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/standards , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Humans , Incidence , Italy/epidemiology , Male , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , ROC Curve
8.
ACS Sens ; 5(8): 2331-2337, 2020 08 28.
Article in English | MEDLINE | ID: covidwho-651760

ABSTRACT

The SARS-CoV-2 infection that caused the COVID-19 pandemic quickly spread worldwide within two months. Rapid diagnosis of the disease and isolation of patients are effective ways to prevent and control the spread of COVID-19. Therefore, a sensitive immunofluorescent assay method was developed for rapid detection of special IgM and IgG of COVID-19 in human serum within 10 min. The recombinant nucleocapsid protein of 2019 novel coronavirus was used as capture antigen. Lanthanide, Eu(III) fluorescent microsphere, was used to qualitatively/semiquantitatively determine the solid phase immunochromatographic assay. A total of 28 clinical positive and 77 negative serum or plasma samples were included in the test. Based on the analysis of serum or plasma from COVID-19 patients and healthy people, the sensitivity and specificity of the immunochromatographic assay were calculated as 98.72% and 100% (IgG), and 98.68% and 93.10% (IgM), respectively. The results demonstrated that rapid immunoassay has high sensitivity and specificity and was useful for rapid serodiagnosis of COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Immunoassay/methods , Microspheres , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Europium , Fluorescence , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Lanthanoid Series Elements , Nucleocapsid Proteins/immunology , Pandemics , Sensitivity and Specificity , Serologic Tests/standards , Time Factors
9.
Lab Med ; 51(5): e59-e65, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-641292

ABSTRACT

Clinical laboratory testing routinely provides actionable results, which help direct patient care in the inpatient and outpatient settings. Since December 2019, a novel coronavirus (SARS-CoV-2) has been causing disease (COVID-19 [coronavirus disease 2019]) in patients, beginning in China and now extending worldwide. In this context of a novel viral pandemic, clinical laboratories have developed multiple novel assays for SARS-CoV-2 diagnosis and for managing patients afflicted with this illness. These include molecular and serologic-based tests, some with point-of-care testing capabilities. Herein, we present an overview of the types of testing available for managing patients with COVID-19, as well as for screening of potential plasma donors who have recovered from COVID-19.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Immunoassay/methods , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Serologic Tests/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/blood , Humans , Immunoassay/standards , Molecular Diagnostic Techniques/standards , Pandemics , Pneumonia, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction/standards , Sensitivity and Specificity , Serologic Tests/standards
10.
Nat Commun ; 11(1): 3436, 2020 07 06.
Article in English | MEDLINE | ID: covidwho-630511

ABSTRACT

The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a detailed comparison of serological COVID-19 assays. We show that among the selected assays there is a wide diversity in assay performance in different scenarios and when correlated to virus neutralizing antibodies. The Wantai ELISA detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, has the best overall characteristics to detect functional antibodies in different stages and severity of disease, including the potential to set a cut-off indicating the presence of protective antibodies. The large variety of available serological assays requires proper assay validation before deciding on deployment of assays for specific applications.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/standards , Antibodies, Neutralizing/blood , Betacoronavirus , Clinical Laboratory Techniques , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Humans , Luminescent Measurements , Neutralization Tests , Pandemics , Sensitivity and Specificity
13.
BMJ ; 370: m2516, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-623945

ABSTRACT

OBJECTIVE: To determine the diagnostic accuracy of serological tests for coronavirus disease-2019 (covid-19). DESIGN: Systematic review and meta-analysis. DATA SOURCES: Medline, bioRxiv, and medRxiv from 1 January to 30 April 2020, using subject headings or subheadings combined with text words for the concepts of covid-19 and serological tests for covid-19. ELIGIBILITY CRITERIA AND DATA ANALYSIS: Eligible studies measured sensitivity or specificity, or both of a covid-19 serological test compared with a reference standard of viral culture or reverse transcriptase polymerase chain reaction. Studies were excluded with fewer than five participants or samples. Risk of bias was assessed using quality assessment of diagnostic accuracy studies 2 (QUADAS-2). Pooled sensitivity and specificity were estimated using random effects bivariate meta-analyses. MAIN OUTCOME MEASURES: The primary outcome was overall sensitivity and specificity, stratified by method of serological testing (enzyme linked immunosorbent assays (ELISAs), lateral flow immunoassays (LFIAs), or chemiluminescent immunoassays (CLIAs)) and immunoglobulin class (IgG, IgM, or both). Secondary outcomes were stratum specific sensitivity and specificity within subgroups defined by study or participant characteristics, including time since symptom onset. RESULTS: 5016 references were identified and 40 studies included. 49 risk of bias assessments were carried out (one for each population and method evaluated). High risk of patient selection bias was found in 98% (48/49) of assessments and high or unclear risk of bias from performance or interpretation of the serological test in 73% (36/49). Only 10% (4/40) of studies included outpatients. Only two studies evaluated tests at the point of care. For each method of testing, pooled sensitivity and specificity were not associated with the immunoglobulin class measured. The pooled sensitivity of ELISAs measuring IgG or IgM was 84.3% (95% confidence interval 75.6% to 90.9%), of LFIAs was 66.0% (49.3% to 79.3%), and of CLIAs was 97.8% (46.2% to 100%). In all analyses, pooled sensitivity was lower for LFIAs, the potential point-of-care method. Pooled specificities ranged from 96.6% to 99.7%. Of the samples used for estimating specificity, 83% (10 465/12 547) were from populations tested before the epidemic or not suspected of having covid-19. Among LFIAs, pooled sensitivity of commercial kits (65.0%, 49.0% to 78.2%) was lower than that of non-commercial tests (88.2%, 83.6% to 91.3%). Heterogeneity was seen in all analyses. Sensitivity was higher at least three weeks after symptom onset (ranging from 69.9% to 98.9%) compared with within the first week (from 13.4% to 50.3%). CONCLUSION: Higher quality clinical studies assessing the diagnostic accuracy of serological tests for covid-19 are urgently needed. Currently, available evidence does not support the continued use of existing point-of-care serological tests. STUDY REGISTRATION: PROSPERO CRD42020179452.


Subject(s)
Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/standards , Antibodies, Viral/blood , Betacoronavirus , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay , Luminescent Measurements , Pandemics , Sensitivity and Specificity
14.
J Clin Microbiol ; 58(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-613360

ABSTRACT

In the coronavirus (CoV) disease 2019 (COVID-19) pandemic, highly selective serological testing is essential to define exposure to severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Many tests have been developed, yet with variable speeds to first results, and are of unknown quality, particularly when considering the prediction of neutralizing capacity. The LIAISON SARS-CoV-2 S1/S2 IgG assay was designed to measure antibodies against the SARS-CoV-2 native S1/S2 proteins in a standardized automated chemiluminescence assay. The clinical and analytical performances of the test were validated in an observational study using residual samples (>1,500) with a positive or negative COVID-19 diagnosis. The LIAISON SARS-CoV-2 S1/S2 IgG assay proved to be highly selective and specific and offered semiquantitative measures of serum or plasma levels of anti-S1/S2 IgG with neutralizing activity. The assay's diagnostic sensitivities were 91.3% and 95.7% at >5 or ≥15 days from diagnosis, respectively, and 100% when assessed against a neutralizing assay. The assay's specificity ranged between 97% and 98.5%. The average imprecision of the assay was a <5% coefficient of variation. Assay performance at 2 different cutoffs was evaluated to optimize predictive values. The automated LIAISON SARS-CoV-2 S1/S2 IgG assay brings efficient, sensitive, specific, and precise serological testing to the laboratory, with the capacity to test large amounts of samples per day; first results are available within 35 min, with a throughput of 170 tests/hour. The semiquantitative results provided by the test also associate with the presence of neutralizing antibodies and may provide a useful tool for the large-scale screening of convalescent-phase plasma for safe therapeutic use.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests , Antibodies, Neutralizing/blood , Automation, Laboratory , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/immunology , Humans , Immunoglobulin G/blood , Pandemics , Pneumonia, Viral/immunology , Reproducibility of Results , Sensitivity and Specificity , Serologic Tests/methods , Serologic Tests/standards , Serologic Tests/statistics & numerical data , Spike Glycoprotein, Coronavirus/immunology
15.
Euro Surveill ; 25(23)2020 06.
Article in English | MEDLINE | ID: covidwho-594584

ABSTRACT

We reviewed the diagnostic accuracy of SARS-CoV-2 serological tests. Random-effects models yielded a summary sensitivity of 82% for IgM, and 85% for IgG and total antibodies. For specificity, the pooled estimate were 98% for IgM and 99% for IgG and total antibodies. In populations with ≤ 5% of seroconverted individuals, unless the assays have perfect (i.e. 100%) specificity, the positive predictive value would be ≤ 88%. Serological tests should be used for prevalence surveys only in hard-hit areas.


Subject(s)
Antibodies, Viral/blood , Clinical Laboratory Techniques/methods , Coronaviridae Infections/diagnosis , Coronavirus Infections/diagnosis , Coronavirus/immunology , Pneumonia, Viral/diagnosis , Serologic Tests/standards , Severe Acute Respiratory Syndrome/immunology , Betacoronavirus , Clinical Laboratory Techniques/standards , Coronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Predictive Value of Tests , Sensitivity and Specificity , Serologic Tests/methods , Severe Acute Respiratory Syndrome/blood
16.
Clin Chim Acta ; 509: 79-82, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-574743

ABSTRACT

BACKGROUND: Besides SARS-CoV-2 RT-PCR testing, serological testing is emerging as additional option in COVID-19 diagnostics. Aim of this study was to evaluate novel immunoassays for detection of SARS-CoV-2 antibodies in human plasma. METHODS: Using EDITM Novel Coronavirus COVID-19 Enzyme Linked Immunosorbent Assays (ELISAs), we measured SARS-CoV-2 IgM and IgG antibodies in 64 SARS-CoV-2 RT-PCR confirmed COVID-19 patients with serial blood samples (n = 104) collected at different time points from symptom onset. Blood samples from 200 healthy blood donors and 256 intensive care unit (ICU) patients collected before the COVID-19 outbreak were also used. RESULTS: The positivity rates in the COVID-19 patients were 5.9% for IgM and 2.9% for IgG ≤ 5 days after symptom onset; Between day 5 and day 10 the positivity rates were 37.1% for IgM and 37.1% for IgG and rose to 76.4% for IgM and 82.4% for IgG after > 10-15 days. After 15-22 days the "true" positivity rates were 94.4% for IgM and 100% for IgG. The "false" positivity rates were 0.5% for IgM and 1.0% for IgG in the healthy blood donors, 1.6% for IgM and 1.2% for IgG in ICU patients. CONCLUSIONS: This study shows high "true" vs. low "false" positivity rates for the EDITM SARS-CoV-2 IgM and IgG ELISAs.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus , Coronavirus Infections/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/blood , Serologic Tests/standards , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Serologic Tests/methods
18.
Clin Chim Acta ; 509: 18-21, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-481002

ABSTRACT

BACKGROUND: Here, we report on a head-to-head comparison of the fully-automated Elecsys® Anti-SARS-CoV-2 immunoassay with the EDITM enzyme linked immunosorbent assays (ELISA) for the detection of SARS-CoV-2 antibodies in human plasma. METHODS: SARS-CoV-2 antibodies were measured with the Elecsys® assay and the EDITM ELISAs (IgM and IgG) in 64 SARS-CoV-2 RT-PCR confirmed COVID-19 patients with serial blood samples (n = 104) collected at different time points from symptom onset. Blood samples from 200 healthy blood donors and 256 intensive care unit (ICU) patients collected before the COVID-19 outbreak were also used. RESULTS: In COVID-19 patients, the percentage of positive results rose with time from symptom onset, peaking to positivity rates after 15-22 days of 100% for the Elecsys® assay, of 94% for the EDITM IgM-ELISA and of 100% for the EDITM IgG ELISA. In the 104 blood samples, the agreement between positive/negative classifications of the Elecsys® assay and the EDITM ELISAs (IgM or IgG) was 90%. The false positivity rates in the healthy blood donors and the ICU patients were < 1% for the Elecsys® assay and < 3% for the EDITM ELISAs. CONCLUSIONS: Our results indicate a high sensitivity and specificity for the Elecsys® assay and an acceptable agreement with the EDITM ELISAs.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Betacoronavirus/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Female , Humans , Immunoassay/methods , Immunoassay/standards , Male , Pandemics , Serologic Tests/methods , Serologic Tests/standards
19.
Clin Chim Acta ; 509: 1-7, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-436406

ABSTRACT

BACKGROUND: The evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibody (Ab) assay performances is of the utmost importance in establishing and monitoring virus spread in the community. In this study focusing on IgG antibodies, we compare reliability of three chemiluminescent (CLIA) and two enzyme linked immunosorbent (ELISA) assays. METHODS: Sera from a total of 271 subjects, including 64 reverse transcription-polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2 patients were tested for specific Ab using Maglumi (Snibe), Liaison (Diasorin), iFlash (Yhlo), Euroimmun (Medizinische Labordiagnostika AG) and Wantai (Wantai Biological Pharmacy) assays. Diagnostic sensitivity and specificity, positive and negative likelihood ratios were evaluated using manufacturers' and optimized thresholds. RESULTS: Optimized thresholds (Maglumi 2 kAU/L, Liaison 6.2 kAU/L and iFlash 15.0 kAU/L) allowed us to achieve a negative likelihood ratio and an accuracy of: 0.06 and 93.5% for Maglumi; 0.03 and 93.1% for Liaison; 0.03 and 91% for iFlash. Diagnostic sensitivities and specificities were above 93.8% and 85.9%, respectively for all CLIA assays. Overall agreement was 90.3% (Cohen's kappa = 0.805 and SE = 0.041) for CLIA, and 98.4% (Cohen's kappa = 0.962 and SE = 0.126) for ELISA. CONCLUSIONS: The results obtained indicate that, for CLIA assays, it might be possible to define thresholds that improve the negative likelihood ratio. Thus, a negative test result enables the identification of subjects at risk of being infected, who should then be closely monitored over time with a view to preventing further viral spread. Redefined thresholds, in addition, improved the overall inter-assay agreement, paving the way to a better harmonization of serologic tests.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/standards , Serologic Tests/standards , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , Child , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Female , Humans , Male , Middle Aged , Pandemics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Serologic Tests/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL