Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Clin Toxicol (Phila) ; 60(6): 759-767, 2022 06.
Article in English | MEDLINE | ID: covidwho-1860717


CONTEXT: In June 2019, a paralytic shellfish poisoning (PSP) case related to the consumption of mussels contaminated by saxitoxins at a concentration below the regulatory threshold came to the attention of the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). This pointed to probable undetected human cases of poisoning by neurotoxic phycotoxins. METHODS: We conducted a retrospective study of poisoning cases by bivalve shellfish (oysters, mussels and scallops) recorded by the French Poison Control Centres (PCC) from 2012 to 2019. All medical records were reviewed by a toxicologist.Cases that could be related to neurotoxic phycotoxins were selected and described. Diagnosis was based on symptoms compatible with ingestion of contaminated shellfish and on contamination data for the shellfish production area (analysed by the French Research Institute for Exploitation of the Sea, Ifremer), or notifications to the European Rapid Alert System for Food and Feed when the origin of the shellfish was known. RESULTS: Among the 619 shellfish poisoning cases recorded by the PCCs from 2012 to 2019, 22% (n = 134) had reported at least one neurological symptom (headache, dizziness or paraesthesia). Review of medical records for the 134 patients led to suspicion of 14 cases of PSP and one case of amnesic shellfish poisoning. Five patients experienced persistent neurological symptoms. Marine toxins were not tested for in the blood or urine of these patients. CONCLUSION: This retrospective identification of cases strongly suspected of being related to neurotoxic phycotoxins led ANSES, PCCs and Ifremer to develop a specific questionnaire and to recommend actions to take when neurological symptoms related to shellfish consumption are reported to a PCC. Daily monitoring of shellfish poisoning cases registered in the national PCCs database was also implemented in order to rapidly detect any suspicious cases, alert the competent authorities, and warn the general population.

Bivalvia , Shellfish Poisoning , Animals , Humans , Marine Toxins/analysis , Poison Control Centers , Retrospective Studies , Shellfish/analysis , Shellfish Poisoning/diagnosis , Shellfish Poisoning/epidemiology
Environ Res ; 207: 112638, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1587831


The circulation of SARS-CoV-2 in the environment has been confirmed numerous times, whilst research on the bioaccumulation in bivalve molluscan shellfish (BMS) has been rather scarce. The present study aimed to fulfil the knowledge gap on SARS-CoV-2 circulation in wastewaters and surface waters in this region and to extend the current knowledge on potential presence of SARS-CoV-2 contamination in BMS. The study included 13 archive wastewater and surface water samples from the start of epidemic and 17 influents and effluents from nine wastewater treatment plants (WWTP) of different capacity and treatment stage, sampled during the second epidemic wave. From that period are the most of 77 collected BMS samples, represented by mussels, oysters and warty venus clams harvested along the Dalmatian coast. All samples were processed according to EN ISO 15216-1 2017 using Mengovirus as a whole process control. SARS-CoV-2 detection was performed by real-time and conventional RT-PCR assays targeting E, N and nsp14 protein genes complemented with nsp14 partial sequencing. Rotavirus A (RVA) real-time RT-PCR assay was implemented as an additional evaluation criterion of virus concentration techniques. The results revealed the circulation of SARS-CoV-2 in nine influents and two secondary treatment effluents from eight WWTPs, while all samples from the start of epidemic (wastewaters, surface waters) were negative which was influenced by sampling strategy. All tertiary effluents and BMS were SARS-CoV-2 negative. The results of RVA amplification were beneficial in evaluating virus concentration techniques and provided insights into RVA dynamics within the environment and community. In conclusion, the results of the present study confirm SARS-CoV-2 circulation in Croatian wastewaters during the second epidemic wave while extending the knowledge on wastewater treatment potential in SARS-CoV-2 removal. Our findings represent a significant contribution to the current state of knowledge that considers BMS of a very low food safety risk regarding SARS-CoV-2.

Bivalvia , COVID-19 , Animals , Humans , SARS-CoV-2 , Shellfish , Wastewater
Sci Total Environ ; 778: 146270, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1120216


The emergence and worldwide spread of SARS-CoV-2 raises new concerns and challenges regarding possible environmental contamination by this virus through spillover of human sewage, where it has been detected. The coastal environment, under increasing anthropogenic pressure, is subjected to contamination by a large number of human viruses from sewage, most of them being non-enveloped viruses like norovirus. When reaching coastal waters, they can be bio-accumulated by filter-feeding shellfish species such as oysters. Methods to detect this viral contamination were set up for the detection of non-enveloped enteric viruses, and may need optimization to accommodate enveloped viruses like coronaviruses (CoV). Here, we aimed at assessing methods for the detection of CoV, including SARS-CoV-2, in the coastal environment and testing the possibility that SARS-CoV-2 can contaminate oysters, to monitor the contamination of French shores by SARS-CoV-2 using both seawater and shellfish. Using the porcine epidemic diarrhea virus (PEDV), a CoV, as surrogate for SARS-CoV-2, and Tulane virus, as surrogate for non-enveloped viruses such as norovirus, we assessed and selected methods to detect CoV in seawater and shellfish. Seawater-based methods showed variable and low yields for PEDV. In shellfish, the current norm for norovirus detection was applicable to CoV detection. Both PEDV and heat-inactivated SARS-CoV-2 could contaminate oysters in laboratory settings, with a lower efficiency than a calicivirus used as control. Finally, we applied our methods to seawater and shellfish samples collected from April to August 2020 in France, where we could detect the presence of human norovirus, a marker of human fecal contamination, but not SARS-CoV-2. Together, our results validate methods for the detection of CoV in the coastal environment, including the use of shellfish as sentinels of the microbial quality of their environment, and suggest that SARS-CoV-2 did not contaminate the French shores during the summer season.

COVID-19 , Norovirus , Animals , France , Humans , SARS-CoV-2 , Shellfish , Swine