Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Genome Biol ; 23(1): 55, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1785167

ABSTRACT

BACKGROUND: Multiplexing of samples in single-cell RNA-seq studies allows a significant reduction of the experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or -lipids allow barcoding sample-specific cells, a process called "hashing." RESULTS: Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. We also compare TotalSeq-B antibodies with CellPlex reagents (10x Genomics) on human PBMCs and TotalSeq-B with different lipids on primary mouse tissues. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines and mouse strains. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects. CONCLUSIONS: Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. On nuclei datasets, lipid hashing delivers the best results. Lipid hashing also outperforms antibodies on cells isolated from mouse brain. However, antibodies demonstrate better results on tissues like spleen or lung.


Subject(s)
COVID-19/blood , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Antibodies/chemistry , Case-Control Studies , Cell Line, Tumor , Cell Nucleus/chemistry , Humans , Lipids/chemistry , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils/chemistry , Neutrophils/immunology , Neutrophils/virology
2.
Front Immunol ; 13: 798712, 2022.
Article in English | MEDLINE | ID: covidwho-1779939

ABSTRACT

The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.


Subject(s)
Fishes/genetics , Fishes/immunology , Leukocytes/immunology , Leukocytes/metabolism , RNA-Seq , Single-Cell Analysis , Animals , Immunity , Single-Cell Analysis/methods
3.
Genome Biol ; 22(1): 324, 2021 11 29.
Article in English | MEDLINE | ID: covidwho-1745431

ABSTRACT

High-throughput single-cell technologies hold the promise of discovering novel cellular relationships with disease. However, analytical workflows constructed for these technologies to associate cell proportions with disease often employ unsupervised clustering techniques that overlook the valuable hierarchical structures that have been used to define cell types. We present treekoR, a framework that empirically recapitulates these structures, facilitating multiple quantifications and comparisons of cell type proportions. Our results from twelve case studies reinforce the importance of quantifying proportions relative to parent populations in the analyses of cytometry data - as failing to do so can lead to missing important biological insights.


Subject(s)
Flow Cytometry/methods , Phenotype , CD8 Antigens , CD8-Positive T-Lymphocytes , COVID-19 , Cluster Analysis , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Single-Cell Analysis/methods
4.
Genome Med ; 14(1): 16, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1690882

ABSTRACT

BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/virology , COVID-19/genetics , COVID-19/pathology , Monocytes/virology , Single-Cell Analysis/methods , COVID-19/immunology , Computational Biology/methods , GPI-Linked Proteins/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Megakaryocyte Progenitor Cells/immunology , Megakaryocyte Progenitor Cells/virology , Monocytes/metabolism , Quantitative Trait Loci , Receptors, CCR1/immunology , Receptors, CCR1/metabolism , Receptors, CXCR6/immunology , Receptors, CXCR6/metabolism , Receptors, IgG/metabolism , Sequence Analysis, RNA , Severity of Illness Index
5.
Sci Immunol ; 7(68): eabf2846, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1685480

ABSTRACT

Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a superactivated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression and engaging SLAMF7 drove a strong wave of inflammatory cytokine expression. Induction of TNF-α after SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients but also in gut macrophages from patients with active Crohn's disease and in lung macrophages from patients with severe COVID-19. This suggests a central role for SLAMF7 in macrophage superactivation with broad implications in human disease pathology.


Subject(s)
Inflammation/immunology , Macrophage Activation/immunology , Signaling Lymphocytic Activation Molecule Family/immunology , Transcriptome/immunology , Acute Disease , Adult , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chronic Disease , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/metabolism , Female , Humans , Inflammation/genetics , Inflammation/metabolism , Macrophage Activation/genetics , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Signaling Lymphocytic Activation Molecule Family/genetics , Signaling Lymphocytic Activation Molecule Family/metabolism , Single-Cell Analysis/methods , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Transcriptome/genetics
6.
Genome Biol ; 23(1): 33, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1649470

ABSTRACT

We consider an increasingly popular study design where single-cell RNA-seq data are collected from multiple individuals and the question of interest is to find genes that are differentially expressed between two groups of individuals. Towards this end, we propose a statistical method named IDEAS (individual level differential expression analysis for scRNA-seq). For each gene, IDEAS summarizes its expression in each individual by a distribution and then assesses whether these individual-specific distributions are different between two groups of individuals. We apply IDEAS to assess gene expression differences of autism patients versus controls and COVID-19 patients with mild versus severe symptoms.


Subject(s)
Autistic Disorder/genetics , COVID-19/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software , Autistic Disorder/metabolism , Autistic Disorder/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Gene Expression Profiling , Gene Expression Regulation , Humans , Microglia/metabolism , Microglia/pathology , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , SARS-CoV-2/pathogenicity , Severity of Illness Index , Whole Exome Sequencing
7.
Front Immunol ; 12: 780804, 2021.
Article in English | MEDLINE | ID: covidwho-1648493

ABSTRACT

Objectives: Currently, cardiovascular risk associated with COVID-19 has been brought to people's attention, but the mechanism is not clear. The aim of this study is to elucidate the mechanisms based on multiple omics data. Methodology: Weighted gene co-expression network analysis (WGCNA) was used to identify key pathways. Combination analysis with aneurysm and atherosclerosis related pathways, hypoxia induced factor-1 (HIF-1) signaling were identified as key pathways of the increased cardiovascular risk associated with COVID-19. ScMLnet algorithm based on scRNA-seq was used to explore the regulation of HIF-1 pathway by intercellular communication. Proteomic analysis was used to detect the regulatory mechanisms between IL18 and HIF-1 signaling pathway. Pseudo time locus analysis was used to study the regulation of HIF1 signaling pathway in macrophages and vascular smooth muscle cells (VSMC) phenotypic transformation. The Virtual Inference of protein-activity by Enriched Regulon (VIPER) analysis was used to study the activity of regulatory proteins. Epigenetic analysis based on methylation revealed epigenetic changes in PBMC after SARS-CoV-2 infection. Potential therapeutic compounds were explored by using Cmap algorithm. Results: HIF-1 signaling pathway is a common key pathway for aneurysms, atherosclerosis and SARS-CoV-2 infection. Intercellular communication analysis showed that macrophage-derived interleukin-18 (IL-18) activates the HIF-1 signaling pathway through IL18R1. Proteomic analysis showed that IL18/IL18R1 promote NF-κB entry into the nucleus, and activated the HIF-1 signaling pathway. Macrophage-derived IL18 promoted the M1 polarization of macrophages and the syntactic phenotype transformation of VSMCs. MAP2K1 mediates the functional regulation of HIF-1 signaling pathway in various cell types. Epigenetic changes in PBMC after COVID-19 infection are characterized by activation of the type I interferon pathway. MEK inhibitors are the promising compounds for the treatment of HIF-1 overactivation. Conclusions: The IL18/IL18R1/HIF1A axis is expected to be an therapeutic target for cardiovascular protection after SARS-CoV-2 infection. MEK inhibitors may be an choice for cardiovascular protection after SARS-COV-2 infection.


Subject(s)
Aneurysm/etiology , Aneurysm/metabolism , Atherosclerosis/etiology , Atherosclerosis/metabolism , COVID-19/blood , COVID-19/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-18 Receptor alpha Subunit/metabolism , Interleukin-18/metabolism , SARS-CoV-2 , Signal Transduction , Aneurysm/pathology , Atherosclerosis/pathology , COVID-19/virology , Case-Control Studies , Cells, Cultured , Epigenesis, Genetic , Humans , Interferon Type I/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism , NF-kappa B/metabolism , Proteomics/methods , RNA-Seq/methods , Risk Factors , Single-Cell Analysis/methods
8.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/drug therapy , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
9.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Article in English | MEDLINE | ID: covidwho-1612914

ABSTRACT

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Congresses as Topic/trends , Embryonic Development/physiology , Research Report , Single-Cell Analysis/trends , Animals , Cell Lineage/physiology , Humans , Macrophages/physiology , Single-Cell Analysis/methods
10.
Cell Rep ; 38(3): 110242, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1588137

ABSTRACT

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Subject(s)
Antibodies, Neutralizing/isolation & purification , Plasma Cells/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Animals , Antibodies, Viral/isolation & purification , COVID-19/immunology , COVID-19/prevention & control , Cells, Cultured , Cohort Studies , Gene Library , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , Mammals , Neutralization Tests , Peptide Library , Plasma Cells/chemistry
11.
Dev Cell ; 57(1): 112-145.e2, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1587971

ABSTRACT

The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.


Subject(s)
Lung/cytology , Lung/physiology , Cell Differentiation/genetics , Databases as Topic , Humans , Lung/metabolism , Regeneration/genetics , Single-Cell Analysis/methods
12.
Cells ; 11(1)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1580996

ABSTRACT

Patients with COPD may be at an increased risk for severe illness from COVID-19 because of ACE2 upregulation, the entry receptor for SARS-CoV-2. Chronic exposure to cigarette smoke, the main risk factor for COPD, increases pulmonary ACE2. How ACE2 expression is controlled is not known but may involve HuR, an RNA binding protein that increases protein expression by stabilizing mRNA. We hypothesized that HuR would increase ACE2 protein expression. We analyzed scRNA-seq data to profile ELAVL1 expression in distinct respiratory cell populations in COVID-19 and COPD patients. HuR expression and cellular localization was evaluated in COPD lung tissue by multiplex immunohistochemistry and in human lung cells by imaging flow cytometry. The regulation of ACE2 expression was evaluated using siRNA-mediated knockdown of HuR. There is a significant positive correlation between ELAVL1 and ACE2 in COPD cells. HuR cytoplasmic localization is higher in smoker and COPD lung tissue; there were also higher levels of cleaved HuR (CP-1). HuR binds to ACE2 mRNA but knockdown of HuR does not change ACE2 protein levels in primary human lung fibroblasts (HLFs). Our work is the first to investigate the association between ACE2 and HuR. Further investigation is needed to understand the mechanistic underpinning behind the regulation of ACE2 expression.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , ELAV-Like Protein 1/genetics , Gene Expression Regulation , Lung/metabolism , Aged , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , ELAV-Like Protein 1/metabolism , Female , Fibroblasts/metabolism , Gene Expression Profiling/methods , Humans , Lung/pathology , Lung/virology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/virology , RNA Interference , RNA-Seq/methods , SARS-CoV-2/physiology , Single-Cell Analysis/methods
13.
Front Immunol ; 12: 733539, 2021.
Article in English | MEDLINE | ID: covidwho-1572288

ABSTRACT

The response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely impacted by the level of virus exposure and status of the host immunity. The nature of protection shown by direct asymptomatic contacts of coronavirus disease 2019 (COVID-19)-positive patients is quite intriguing. In this study, we have characterized the antibody titer, SARS-CoV-2 surrogate virus neutralization, cytokine levels, single-cell T-cell receptor (TCR), and B-cell receptor (BCR) profiling in asymptomatic direct contacts, infected cases, and controls. We observed significant increase in antibodies with neutralizing amplitude in asymptomatic contacts along with cytokines such as Eotaxin, granulocyte-colony stimulating factor (G-CSF), interleukin 7 (IL-7), migration inhibitory factor (MIF), and macrophage inflammatory protein-1α (MIP-1α). Upon single-cell RNA (scRNA) sequencing, we explored the dynamics of the adaptive immune response in few representative asymptomatic close contacts and COVID-19-infected patients. We reported direct asymptomatic contacts to have decreased CD4+ naive T cells with concomitant increase in CD4+ memory and CD8+ Temra cells along with expanded clonotypes compared to infected patients. Noticeable proportions of class switched memory B cells were also observed in them. Overall, these findings gave an insight into the nature of protection in asymptomatic contacts.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Genomics/methods , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/genetics , Adult , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Humans , Male , /metabolism , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Young Adult
14.
Nat Methods ; 18(6): 627-630, 2021 06.
Article in English | MEDLINE | ID: covidwho-1550331

ABSTRACT

We introduce the TRUST4 open-source algorithm for reconstruction of immune receptor repertoires in αß/γδ T cells and B cells from RNA-sequencing (RNA-seq) data. Compared with competing methods, TRUST4 supports both FASTQ and BAM format and is faster and more sensitive in assembling longer-even full-length-receptor repertoires. TRUST4 can also call repertoire sequences from single-cell RNA-seq (scRNA-seq) data without V(D)J enrichment, and is compatible with both SMART-seq and 5' 10x Genomics platforms.


Subject(s)
Algorithms , Receptors, Immunologic/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , V(D)J Recombination
15.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1528156

ABSTRACT

The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.


Subject(s)
Algorithms , Computational Biology/methods , Gene Expression Profiling/methods , RNA-Seq/methods , Single-Cell Analysis/methods , COVID-19/blood , COVID-19/genetics , COVID-19/virology , Cluster Analysis , Computer Simulation , Genomics/methods , Humans , Leukocytes, Mononuclear/classification , Leukocytes, Mononuclear/metabolism , Reproducibility of Results , SARS-CoV-2/physiology , Severity of Illness Index
16.
Nat Biotechnol ; 40(3): 374-381, 2022 03.
Article in English | MEDLINE | ID: covidwho-1483138

ABSTRACT

Multimodal measurements of single-cell profiles are proving increasingly useful for characterizing cell states and regulatory mechanisms. In the present study, we developed PHAGE-ATAC (Assay for Transposase-Accessible Chromatin), a massively parallel droplet-based method that uses phage displaying, engineered, camelid single-domain antibodies ('nanobodies') for simultaneous single-cell measurements of protein levels and chromatin accessibility profiles, and mitochondrial DNA-based clonal tracing. We use PHAGE-ATAC for multimodal analysis in primary human immune cells, sample multiplexing, intracellular protein analysis and the detection of SARS-CoV-2 spike protein in human cell populations. Finally, we construct a synthetic high-complexity phage library for selection of antigen-specific nanobodies that bind cells of particular molecular profiles, opening an avenue for protein detection, cell characterization and screening with single-cell genomics.


Subject(s)
Bacteriophages , COVID-19 , Bacteriophages/genetics , Chromatin/genetics , Humans , SARS-CoV-2 , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus
17.
Gigascience ; 10(9)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1443047

ABSTRACT

BACKGROUND: B-cell immunoglobulin repertoires with paired heavy and light chain can be determined by means of 10X single-cell V(D)J sequencing. Precise and quick analysis of 10X single-cell immunoglobulin repertoires remains a challenge owing to the high diversity of immunoglobulin repertoires and a lack of specialized software that can analyze such diverse data. FINDINGS: In this study, specialized software for 10X single-cell immunoglobulin repertoire analysis was developed. SCIGA (Single-Cell Immunoglobulin Repertoire Analysis) is an easy-to-use pipeline that performs read trimming, immunoglobulin sequence assembly and annotation, heavy and light chain pairing, statistical analysis, visualization, and multiple sample integration analysis, which is all achieved by using a 1-line command. Then SCIGA was used to profile the single-cell immunoglobulin repertoires of 9 patients with coronavirus disease 2019 (COVID-19). Four neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified from these repertoires. CONCLUSIONS: SCIGA provides a complete and quick analysis for 10X single-cell V(D)J sequencing datasets. It can help researchers to interpret B-cell immunoglobulin repertoires with paired heavy and light chain.


Subject(s)
Immunoglobulins/metabolism , Single-Cell Analysis/methods , Software , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
19.
Nat Commun ; 12(1): 3358, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1397869

ABSTRACT

Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.


Subject(s)
Cell Tracking/methods , Embryo, Nonmammalian/metabolism , RNA, Messenger/genetics , Transcriptome/genetics , Zebrafish/genetics , Animals , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Female , Gene Expression Regulation, Developmental , Oocytes/cytology , Oocytes/metabolism , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Spatio-Temporal Analysis , Species Specificity , Xenopus/embryology , Xenopus/genetics , Xenopus laevis/embryology , Xenopus laevis/genetics , Zebrafish/embryology
20.
Nat Commun ; 12(1): 652, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1397868

ABSTRACT

Injury and loss of oligodendrocytes can cause demyelinating diseases such as multiple sclerosis. To improve our understanding of human oligodendrocyte development, which could facilitate development of remyelination-based treatment strategies, here we describe time-course single-cell-transcriptomic analysis of developing human stem cell-derived oligodendrocyte-lineage-cells (hOLLCs). The study includes hOLLCs derived from both genome engineered embryonic stem cell (ESC) reporter cells containing an Identification-and-Purification tag driven by the endogenous PDGFRα promoter and from unmodified induced pluripotent (iPS) cells. Our analysis uncovers substantial transcriptional heterogeneity of PDGFRα-lineage hOLLCs. We discover sub-populations of human oligodendrocyte progenitor cells (hOPCs) including a potential cytokine-responsive hOPC subset, and identify candidate regulatory genes/networks that define the identity of these sub-populations. Pseudotime trajectory analysis defines developmental pathways of oligodendrocytes vs astrocytes from PDGFRα-expressing hOPCs and predicts differentially expressed genes between the two lineages. In addition, pathway enrichment analysis followed by pharmacological intervention of these pathways confirm that mTOR and cholesterol biosynthesis signaling pathways are involved in maturation of oligodendrocytes from hOPCs.


Subject(s)
Genetic Heterogeneity , Genetic Variation , Induced Pluripotent Stem Cells/metabolism , Oligodendrocyte Precursor Cells/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Astrocytes/cytology , Astrocytes/metabolism , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Cholesterol/biosynthesis , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Regulatory Networks/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Oligodendrocyte Precursor Cells/cytology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL