Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.507
Filter
1.
J Virol ; 96(10): e0187521, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35475668

ABSTRACT

Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous ß-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and ß-genus to inhibit the interferon-ß (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-ß expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.


Subject(s)
Interferon Regulatory Factor-3 , Interferon-beta , Oncogene Proteins, Viral , Papillomavirus Infections , Repressor Proteins , Human papillomavirus 16/metabolism , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , Mucous Membrane/virology , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomaviridae/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Skin/virology
2.
Viruses ; 14(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35216020

ABSTRACT

To date, 14 human polyomaviruses (HPyVs) have been identified using high-throughput technologies. Among them, MCPyV, HPyV6, HPyV7 and TSPyV present a skin tropism, but a causal role in skin diseases has been established only for MCPyV as a causative agent of Merkel cell carcinoma (MCC) and TSPyV as an etiological agent of Trichodysplasia Spinulosa (TS). In the search for a possible role for cutaneous HPyVs in the development of skin malignant lesions, we investigated the prevalence of MCPyV, HPyV6, HPyV7 and TSPyV in actinic keratosis (AK), a premalignant skin lesion that has the potential to progress towards a squamous cell carcinoma (SCC). One skin lesion and one non-lesion skin from nine affected individuals were analyzed by qualitative PCR. MCPyV was detected in 9 out of 9 lesion biopsies and 6 out of 8 non-lesion biopsies. HPyV6 was detected only in healthy skin, while HPyV7 and TSPyV were not detected in any skin sample. These findings argue against a possible role of cutaneous HPyVs in AK. However, considering the small sample size analyzed, a definitive conclusion cannot be drawn. Longitudinal studies on large cohorts are warranted.


Subject(s)
Keratosis, Actinic/virology , Polyomavirus Infections/diagnosis , Polyomavirus/genetics , Skin/virology , Aged , Aged, 80 and over , Biopsy , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing , Humans , Keratosis, Actinic/pathology , Male , Polyomavirus/classification , Polyomavirus/isolation & purification , Polyomavirus Infections/virology , Prevalence , Skin/pathology
3.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35216085

ABSTRACT

The equine sarcoid is one of the most common neoplasias in the Equidae family. Despite the association of this tumor with the presence of bovine papillomavirus (BPV), the molecular mechanism of this lesion has not been fully understood. The transgenization of equine adult cutaneous fibroblast cells (ACFCs) was accomplished by nucleofection, followed by detection of molecular modifications using high-throughput NGS transcriptome sequencing. The results of the present study confirm that BPV-E4- and BPV-E1^E4-mediated nucleofection strategy significantly affected the transcriptomic alterations, leading to sarcoid-like neoplastic transformation of equine ACFCs. Furthermore, the results of the current investigation might contribute to the creation of in vitro biomedical models suitable for estimating the fates of molecular dedifferentiability and the epigenomic reprogrammability of BPV-E4 and BPV-E4^E1 transgenic equine ACFC-derived sarcoid-like cell nuclei in equine somatic cell-cloned embryos. Additionally, these in vitro models seem to be reliable for thoroughly recognizing molecular mechanisms that underlie not only oncogenic alterations in transcriptomic signatures, but also the etiopathogenesis of epidermal and dermal sarcoid-dependent neoplastic transformations in horses and other equids. For those reasons, the aforementioned transgenic models might be useful for devising clinical treatments in horses afflicted with sarcoid-related neoplasia of cutaneous and subcutaneous tissues.


Subject(s)
Fibroblasts/virology , Horse Diseases/virology , Horses/virology , Neoplasms/virology , Papillomaviridae/genetics , Sarcoidosis/virology , Skin Diseases/virology , Animals , Animals, Genetically Modified/virology , Equidae/virology , Papillomavirus Infections/virology , Skin/virology , Transcriptome/genetics
4.
Sci Rep ; 12(1): 1641, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102178

ABSTRACT

H84T BanLec is a molecularly engineered lectin cloned from bananas with broad-spectrum antiviral activity against several RNA viruses. H84T BanLec dimers bind glycoproteins containing high-mannose N-glycans on the virion envelope, blocking attachment, entry, uncoating, and spread. It was unknown whether H84T BanLec is effective against human herpesviruses varicella-zoster virus (VZV), human cytomegalovirus (HCMV), and herpes simplex virus 1 (HSV-1), which express high-mannose N-linked glycoproteins on their envelopes. We evaluated H84T BanLec against VZV-ORF57-Luc, TB40/E HCMV-fLuc-eGFP, and HSV-1 R8411 in cells, skin organ culture, and mice. The H84T BanLec EC50 was 0.025 µM for VZV (SI50 = 4000) in human foreskin fibroblasts (HFFs), 0.23 µM for HCMV (SI50 = 441) in HFFs, and 0.33 µM for HSV-1 (SI50 = 308) in Vero cells. Human skin was obtained from reduction mammoplasties and prepared for culture. Skin was infected and cultured up to 14 days. H84T BanLec prevented VZV, HCMV and HSV-1 spread in skin at 10 µM in the culture medium, and also exhibited dose-dependent antiviral effects. Additionally, H84T BanLec arrested virus spread when treatment was delayed. Histopathology of HCMV-infected skin showed no overt toxicity when H84T BanLec was present in the media. In athymic nude mice with human skin xenografts (NuSkin mice), H84T BanLec reduced VZV spread when administered subcutaneously prior to intraxenograft virus inoculation. This is the first demonstration of H84T BanLec effectiveness against DNA viruses. H84T BanLec may have additional unexplored activity against other, clinically relevant, glycosylated viruses.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus/drug effects , Herpesviridae Infections/drug therapy , Herpesvirus 1, Human/drug effects , Herpesvirus 3, Human/drug effects , Plant Lectins/pharmacology , Skin Diseases, Viral/drug therapy , Skin/virology , Animals , Chlorocebus aethiops , Cytomegalovirus/growth & development , Herpesviridae Infections/virology , Herpesvirus 1, Human/growth & development , Herpesvirus 3, Human/growth & development , Mice, Nude , Musa/genetics , Plant Lectins/genetics , Skin Diseases, Viral/virology , Tissue Culture Techniques , Vero Cells , Virus Replication/drug effects
5.
PLoS One ; 16(12): e0261122, 2021.
Article in English | MEDLINE | ID: mdl-34914770

ABSTRACT

Fowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clinical specimens prevents the risk of potential genome modifications associated with in vitro culturing of the virus. Only one study has sequenced FPV genomes directly from clinical samples using Nanopore sequencing, however, the study didn't compare the sequences against Illumina sequencing or laboratory propagated sequences. Here, the suitability of WGS for strain identification of FPV directly from cutaneous tissue was evaluated, using a combination of Illumina and Nanopore sequencing technologies. Sequencing results were compared with the sequence obtained from FPV grown in chorioallantoic membranes (CAMs) of chicken embryos. Complete genome sequence of FPV was obtained directly from affected comb tissue using a map to reference approach. FPV sequence from cutaneous tissue was highly similar to that of the virus grown in CAMs with a nucleotide identity of 99.8%. Detailed polymorphism analysis revealed the presence of a highly comparable number of single nucleotide polymorphisms (SNPs) in the two sequences when compared to the reference genome, providing essentially the same strain identification information. Comparative genome analysis of the map to reference consensus sequences from the two genomes revealed that this field isolate had the highest nucleotide identity of 99.5% with an FPV strain from the USA (Fowlpox virus isolate, FWPV-MN00.2, MH709124) and 98.8% identity with the Australian FPV vaccine strain (FWPV-S, MW142017). Sequencing results showed that WGS directly from cutaneous tissues is not only rapid and cost-effective but also provides essentially the same strain identification information as in-vitro grown virus, thus circumventing in vitro culturing.


Subject(s)
Chorioallantoic Membrane/virology , Fowlpox virus/isolation & purification , Fowlpox/diagnosis , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Skin/virology , Whole Genome Sequencing/methods , Animals , Australia , Chick Embryo , Chickens , Fowlpox/virology , Fowlpox virus/classification , Fowlpox virus/genetics , Fowlpox virus/growth & development , Polymorphism, Genetic
6.
FEMS Microbiol Lett ; 368(20)2021 11 30.
Article in English | MEDLINE | ID: mdl-34849758

ABSTRACT

The prevalence of multidrug-resistant (MDR) strains has caused serious problems in the treatment of burn infections. MDR Enterobactercloacae and Enterobacterhormaechei have been defined as the causative agents of nosocomial infections in burn patients. In this situation, examination of phages side effects on human cell lines before any investigation on human or animal that can provide beneficial information about the safety of isolated phages. The aim of this study was to isolate and identify the specific bacteriophages on MDR E. cloacae and E. hormaechei isolated from burn wounds and to analyze the efficacy, cell viability and cell cytotoxicity of phages on A-375 and HFSF-PI cell lines by MTT (3-(4, 5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide) colorimetric assay and lactate dehydrogenase (LDH) release assay. Phages were isolated from urban sewage Isfahan, Iran. Enterobactercloacae strain Iau-EC100 (GenBank accession number: MZ314381) and E. hormaechei strain Iau-EHO100 (GenBank accession number: MZ348826) were sensitive to the isolated phages. Transmission electron microscopy (TEM) results revealed that PɸEn-CL and PɸEn-HO that were described had the morphologies of Myovirus and Inovirus, respectively. Overall, MTT and LDH assays showed moderate to excellent correlation in the evaluation of cytotoxicity of isolated phages. The results of MTT and LDH assays showed that, phages PɸEn-CL and PɸEn-HO had no significant toxicity effect on A375 and HFSF-PI 3 cells. Phage PɸEn-HO had a better efficacy on the two tested cell lines than other phage. Our results indicated that, there were significant differences between the two cytotoxicity assays in phage treatment compared to control.


Subject(s)
Bacteriophages , Burns , Enterobacter cloacae , Enterobacter , Wound Infection , Bacteriophages/physiology , Burns/complications , Burns/microbiology , Cell Line , Enterobacter/virology , Enterobacter cloacae/virology , Humans , Skin/microbiology , Skin/virology , Wound Infection/etiology , Wound Infection/microbiology
7.
Sci Rep ; 11(1): 22868, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819522

ABSTRACT

Transfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13-16% or 0.8-0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3-9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , SARS-CoV-2/metabolism , COVID-19/metabolism , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Humans , SARS-CoV-2/pathogenicity , Skin/virology , Viral Load
8.
Curr Probl Dermatol ; 55: 339-353, 2021.
Article in English | MEDLINE | ID: mdl-34698023

ABSTRACT

Cutaneous malignant melanoma (CMM) and nonmelanoma skin cancers (NMSC), squamous cell and basal cell carcinomas, have been increasing at exponential rates for as long as the International Agency for Research on Cancer (IARC) have been collecting data starting from 1955 in some northern European countries and 1960 in most other European countries. Different strains of the human papilloma virus (HPV) have been found in CMM and NMSC biopsies and implicated in the carcinogenic process as a "hit-and-run" mechanism and can spread at exponential rates, especially since the 1960s' sexual revolution. This chapter covers only IARC data for CMM in the European countries from 1960 to 2018, plotted by regions (northern, middle, and southern latitudes and eastern versus western longitudes), countries latitudes, and each country over time, which shows that about half have linear and the other half have exponential increases in CMM. From this analyzed data and published data in the literature, the major risk factors of CMM appear to be light hair color, especially red and white hair (reactive oxygen species and UVA; 320-400 nm), low cutaneous vitamin D3 levels, and HPV after 1960, while there was no apparent risk from exposure to UVB (290-320 nm) or sunburns.


Subject(s)
Alphapapillomavirus/radiation effects , Papillomavirus Infections/etiology , Skin Neoplasms/etiology , Ultraviolet Rays/adverse effects , Alphapapillomavirus/pathogenicity , Carcinogenesis/radiation effects , Humans , Papillomavirus Infections/pathology , Reactive Oxygen Species/metabolism , Risk Factors , Skin/metabolism , Skin/pathology , Skin/radiation effects , Skin/virology , Skin Neoplasms/pathology
9.
Viruses ; 13(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34696346

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a multisystem disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that primarily causes respiratory symptoms. However, an increasing number of cutaneous manifestations associated with this disease have been reported. The aim of this study is to analyze the scientific literature on cutaneous manifestations associated with SARS-CoV-2 by means of a narrative literature review until June 2021. The search was conducted in the following electronic databases: Medline (PubMed), SciELO, and Cochrane Library Plus. The most common cutaneous manifestations in patients with COVID-19 are vesicular eruptions, petechial/purpuric rashes, acral lesions, liveoid lesions, urticarial rash, and maculopapular-erythematous rash. These manifestations may be the first presenting symptoms of SARS-CoV-2 infection, as is the case with acral lesions, vesicular eruptions, and urticaria. In relation to severity, the presence of liveoid lesions may be associated with a more severe course of the disease. Treatment used for dermatological lesions includes therapy with anticoagulants, corticosteroids, and antihistamines. Knowledge of the dermatologic manifestations associated with SARS-CoV-2 contributes to the diagnosis of COVID-19 in patients with skin lesions associated with respiratory symptoms or in asymptomatic patients. In addition, understanding the dermatologic lesions associated with COVID-19 could be useful to establish a personalized care plan.


Subject(s)
COVID-19/pathology , Skin Diseases/pathology , Skin/pathology , COVID-19/metabolism , Exanthema/pathology , Exanthema/therapy , Exanthema/virology , Humans , SARS-CoV-2/pathogenicity , Skin/virology , Skin Diseases/therapy , Skin Diseases/virology , Skin Physiological Phenomena , Urticaria/pathology , Urticaria/therapy , Urticaria/virology
11.
Sci Rep ; 11(1): 19817, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615949

ABSTRACT

Recent studies have focused their attention on conjunctivitis as one of the symptoms of coronavirus disease 2019 (COVID-19). Therefore, tear samples were taken from COVID-19 patients and the presence of SARS-CoV-2 was evidenced using Real Time reverse transcription polymerase chain reaction. The main aim of this study was to analyze mRNA expression in the tears of patients with COVID-19 compared with healthy subjects using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 25 genes that differ statistically between healthy individuals and patients affected by COVID-19. In particular, the NGS analysis identified the presence of several genes involved in B cell signaling and keratinization. In particular, the genes involved in B cell signaling were downregulated in the tears of COVID-19 patients, while those involved in keratinization were upregulated. The results indicated that SARS-CoV-2 may induce a process of ocular keratinization and a defective B cell response.


Subject(s)
COVID-19/genetics , Eye Diseases/virology , Tears/metabolism , Transcriptome , Aged , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Eye Diseases/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Keratins/metabolism , Male , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA/methods , Skin/metabolism , Skin/pathology , Skin/virology , Tears/virology
12.
Soft Matter ; 17(41): 9457-9468, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34612290

ABSTRACT

The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of the virus-skin interactions. In the case of coronaviruses, the interaction with surfaces (including the skin surface) is mediated by their large glycoprotein spikes that protrude from (and cover) the viral envelope. Here, we perform all atomic simulations between the SARS-CoV-2 spike glycoprotein and human skin models. We consider an "oily" skin covered by sebum and a "clean" skin exposing the stratum corneum. The simulations show that the spike tries to maximize the contacts with stratum corneum lipids, particularly ceramides, with substantial hydrogen bonding. In the case of "oily" skin, the spike is able to retain its structure, orientation and hydration over sebum with little interaction with sebum components. Comparison of these results with our previous simulations of the interaction of SARS-CoV-2 spike with hydrophilic and hydrophobic solid surfaces, suggests that the "soft" or "hard" nature of the surface plays an essential role in the interaction of the spike protein with materials.


Subject(s)
Protein Binding , Skin/virology , Spike Glycoprotein, Coronavirus , COVID-19 , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
13.
Viruses ; 13(9)2021 09 14.
Article in English | MEDLINE | ID: mdl-34578405

ABSTRACT

Papillomavirus L1 and L2, the major and minor capsid proteins, play significant roles in viral assembly, entry, and propagation. In the current study, we investigate the impact of L1 and L2 on viral life cycle and tumor growth with a newly established mouse papillomavirus (MmuPV1) infection model. MmuPV1 L1 knockout, L2 knockout, and L1 plus L2 knockout mutant genomes (designated as L1ATGko-4m, L2ATGko, and L1-L2ATGko respectively) were generated. The mutants were examined for their ability to generate lesions in athymic nude mice. Viral activities were examined by qPCR, immunohistochemistry (IHC), in situ hybridization (ISH), and transmission electron microscopy (TEM) analyses. We demonstrated that viral DNA replication and tumor growth occurred at both cutaneous and mucosal sites infected with each of the mutants. Infections involving L1ATGko-4m, L2ATGko, and L1-L2ATGko mutant genomes generally resulted in smaller tumor sizes compared to infection with the wild type. The L1 protein was absent in L1ATGko-4m and L1-L2ATGko mutant-treated tissues, even though viral transcripts and E4 protein expression were robust. Therefore, L1 is not essential for MmuPV1-induced tumor growth, and this finding parallels our previous observations in the rabbit papillomavirus model. Very few viral particles were detected in L2ATGko mutant-infected tissues. Interestingly, the localization of L1 in lesions induced by L2ATGko was primarily cytoplasmic rather than nuclear. The findings support the hypothesis that the L2 gene influences the expression, location, transport, and assembly of the L1 protein in vivo.


Subject(s)
Capsid Proteins/physiology , Mucous Membrane/virology , Oncogene Proteins, Viral/physiology , Papillomaviridae/physiology , Skin/virology , Animals , Capsid Proteins/genetics , Cell Transformation, Viral , DNA, Viral/biosynthesis , Female , Genome, Viral , Mice , Mice, Nude , Mutation , Oncogene Proteins, Viral/genetics , Papillomaviridae/genetics , Papillomaviridae/pathogenicity , Virus Replication
14.
Front Immunol ; 12: 735643, 2021.
Article in English | MEDLINE | ID: mdl-34552595

ABSTRACT

Tissue-resident-memory T cells (TRM) populate the body's barrier surfaces, functioning as frontline responders against reencountered pathogens. Understanding of the mechanisms by which CD8TRM achieve effective immune protection remains incomplete in a naturally recurring human disease. Using laser capture microdissection and transcriptional profiling, we investigate the impact of CD8TRM on the tissue microenvironment in skin biopsies sequentially obtained from a clinical cohort of diverse disease expression during herpes simplex virus 2 (HSV-2) reactivation. Epithelial cells neighboring CD8TRM display elevated and widespread innate and cell-intrinsic antiviral signature expression, largely related to IFNG expression. Detailed evaluation via T-cell receptor reconstruction confirms that CD8TRM recognize viral-infected cells at the specific HSV-2 peptide/HLA level. The hierarchical pattern of core IFN-γ signature expression is well-conserved in normal human skin across various anatomic sites, while elevation of IFI16, TRIM 22, IFITM2, IFITM3, MX1, MX2, STAT1, IRF7, ISG15, IFI44, CXCL10 and CCL5 expression is associated with HSV-2-affected asymptomatic tissue. In primary human cells, IFN-γ pretreatment reduces gene transcription at the immediate-early stage of virus lifecycle, enhances IFI16 restriction of wild-type HSV-2 replication and renders favorable kinetics for host protection. Thus, the adaptive immune response through antigen-specific recognition instructs innate and cell-intrinsic antiviral machinery to control herpes reactivation, a reversal of the canonical thinking of innate activating adaptive immunity in primary infection. Communication from CD8TRM to surrounding epithelial cells to activate broad innate resistance might be critical in restraining various viral diseases.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epithelial Cells/immunology , Herpes Genitalis/immunology , Herpesvirus 2, Human/immunology , Immunity, Innate , Immunologic Memory , Skin/immunology , Adaptive Immunity/genetics , Adult , Aged , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Gene Expression Profiling , Herpes Genitalis/genetics , Herpes Genitalis/metabolism , Herpes Genitalis/virology , Herpesvirus 2, Human/pathogenicity , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Male , /virology , Middle Aged , Phenotype , Skin/metabolism , Skin/virology , Transcriptome
15.
J Virol ; 95(21): e0133821, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34379501

ABSTRACT

Herpes simplex virus 1 (HSV-1) enters its human host via the skin and mucosa. The open question is how the virus invades this highly protective tissue in vivo to approach its receptors in the epidermis and initiate infection. Here, we performed ex vivo infection studies in human skin to investigate how susceptible the epidermis and dermis are to HSV-1 and whether wounding facilitates viral invasion. Upon ex vivo infection of complete skin, only sample edges with integrity loss demonstrated infected cells. After removal of the dermis, HSV-1 efficiently invaded the basal layer of the epidermis and, from there, gained access to suprabasal layers. This finding supports a high susceptibility of all epidermal layers which correlated with the surface expression of the receptors nectin-1 and herpesvirus entry mediator (HVEM). In contrast, only single infected cells were detected in the separated dermis, where minor expression of the receptors was found. Interestingly, after wounding, nearly no infection of the epidermis was observed via the skin surface. However, if the wounding of the skin samples led to breaks through the dermis, HSV-1 infected mainly keratinocytes via the damaged dermal layer. The application of latex beads revealed only occasional entry via the wounded dermis; however, it facilitated penetration via the wounded skin surface. Thus, we suggest that although the wounded human skin surface allows particle penetration, the skin still provides barriers that prevent HSV-1 from reaching its receptors. IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) invades its host via the skin and mucosa, which leads to primary infection of the epithelium. As the various epithelial barriers effectively protect the tissue against viral invasion, successful infection most likely depends on tissue damage. We addressed the initial invasion process in human skin by ex vivo infection to understand how HSV-1 overcomes physical skin barriers and reaches its receptors to enter skin cells. Our results demonstrate that intact skin samples allow viral access only from the edges, while the epidermis is highly susceptible once the basal epidermal layer serves as an initial entry portal. Surprisingly, mechanical wounding did not facilitate HSV-1 entry via the skin surface, although latex beads still penetrated via the lesions. Our results imply that successful invasion of HSV-1 depends on how well the virus can reach its receptors, which was not accomplished by skin lesions under ex vivo conditions.


Subject(s)
Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Nectins/metabolism , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Skin/virology , Virus Internalization , Wound Infection/virology , Dermis/virology , Epidermis/virology , Host Microbial Interactions , Humans , Keratinocytes/virology
16.
Viruses ; 13(7)2021 07 13.
Article in English | MEDLINE | ID: mdl-34372563

ABSTRACT

The epidemiological role of domestic animals in the spread and transmission of SARS-CoV-2 to humans has been investigated in recent reports, but some aspects need to be further clarified. To date, only in rare cases have dogs and cats living with COVID-19 patients been found to harbour SARS-CoV-2, with no evidence of pet-to-human transmission. The aim of the present study was to verify whether dogs and cats act as passive mechanical carriers of SARS-CoV-2 when they live in close contact with COVID-19 patients. Cutaneous and interdigital swabs collected from 48 dogs and 15 cats owned by COVID-19 patients were tested for SARS-CoV-2 by qRT-PCR. The time elapsed between owner swab positivity and sample collection from pets ranged from 1 to 72 days, with a median time of 23 days for dogs and 39 days for cats. All samples tested negative, suggesting that pets do not passively carry SARS-CoV-2 on their hair and pads, and thus they likely do not play an important role in the virus transmission to humans. This data may contribute to confirming that the direct contact with the hair and pads of pets does not represent a route for the transmission of SARS-CoV-2.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , Dog Diseases/virology , Hair/virology , Pets/virology , SARS-CoV-2/isolation & purification , Skin/virology , Animals , COVID-19/transmission , Cat Diseases/transmission , Cats , Dog Diseases/transmission , Dogs , Humans
17.
Indian J Pathol Microbiol ; 64(3): 532-534, 2021.
Article in English | MEDLINE | ID: mdl-34341266

ABSTRACT

BACKGROUND: Condylomata acuminata, commonly known as genital wart is a sexually transmitted disease caused by Human Papillomavirus (HPV). The positivity of HPV6/11 in condylomata acuminata in western literature varies from 80-90% however, there is a paucity of Indian literature. AIM: The aim of the present study was to determine the role of HPV 6 & 11 in Condylomata acuminata in Indian patients. METHODS: A total of 22 formalin fixed parafilm embedded (FFPE) tissue was collected from the cases of condylomata acuminata which was histologically diagnosed and was used to detect HPV 6 and 11 by PCR. RESULTS: Of these 14/22 patients (63.6%) were positive for HPV 6 or 11; HPV 6 alone in eight (36.3%) and HPV 11 in six (27.2%). CONCLUSION: The high HPV 6 and 11 PCR positivity suggests their definitive role in causation of condylomas cases. This important HPV infection is preventable by prophylactic vaccination.


Subject(s)
Condylomata Acuminata/epidemiology , Condylomata Acuminata/virology , Human papillomavirus 6/pathogenicity , Papillomaviridae/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , Condylomata Acuminata/ethnology , DNA, Viral , Female , Formaldehyde , Human papillomavirus 6/genetics , Humans , India/epidemiology , Male , Middle Aged , Papillomaviridae/classification , Papillomaviridae/genetics , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Paraffin Embedding , Skin/pathology , Skin/virology , Young Adult
18.
Molecules ; 26(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299596

ABSTRACT

Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.


Subject(s)
Doxycycline/pharmacology , Fibroblasts/metabolism , Skin/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Virus Replication/drug effects , Zika Virus/physiology , Animals , Chlorocebus aethiops , Doxycycline/chemistry , Fibroblasts/virology , Humans , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Skin/virology , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Zika Virus/chemistry
19.
Biomed Res Int ; 2021: 5595016, 2021.
Article in English | MEDLINE | ID: mdl-34258268

ABSTRACT

BACKGROUND: COVID-19 is a pandemic disease worldwide. Although cutaneous manifestations may present in affected patients, there have been limited studies on the cutaneous findings and hair and nail abnormalities after discharge. OBJECTIVE: To establish the cutaneous manifestations, hair and scalp disorders, and nail abnormalities in patients who recovered from COVID-19 infections. METHODS: A retrospective chart review and telephone interviews were conducted to determine the cutaneous manifestations, hair and scalp disorders, and nail abnormalities of patients aged over 18 years who were diagnosed with COVID-19 infections at Siriraj Hospital, Bangkok, Thailand, between January and June 2020. RESULTS: Ninety-three patients with prior COVID-19 infections participated in the study. The COVID-19 severity had been mild for most (71%). Cutaneous manifestations were reported in 8 patients (8.6%), with the common skin conditions being maculopapular rash and urticaria. The onsets of the skin conditions were before admission (1%), during admission (4.3%), and after discharge (3.2%). Increased hair shedding was also reported in 22 patients (23.7%), with a female predominance. Three patients were affected during admission, while the others were affected after discharge. The patients with moderate, severe, and critical COVID-19 infections experienced significantly more hair shedding than those with asymptomatic and mild diseases. Only 2 patients with mild COVID-19 disease reported nail abnormalities (chromonychia and brittle nails). CONCLUSIONS: Cutaneous manifestations, hair disorders, and nail abnormalities can occur in patients with COVID-19 after their discharge from hospital. Patients should therefore be followed up in anticipation of dermatological problems.


Subject(s)
COVID-19 , Hair Diseases , Nail Diseases , Pandemics , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/metabolism , Female , Follow-Up Studies , Hair/metabolism , Hair/virology , Hair Diseases/epidemiology , Hair Diseases/metabolism , Hair Diseases/virology , Humans , Male , Middle Aged , Nail Diseases/epidemiology , Nail Diseases/metabolism , Nail Diseases/virology , Nails/metabolism , Nails/virology , Skin/metabolism , Skin/virology
SELECTION OF CITATIONS
SEARCH DETAIL