Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cochrane Database Syst Rev ; 4: CD013463, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1990402

ABSTRACT

BACKGROUND: Iron deficiency is an important micronutrient deficiency contributing to the global burden of disease, and particularly affects children, premenopausal women, and people in low-resource settings. Anaemia is a possible consequence of iron deficiency, although clinical and functional manifestations of anemia can occur without iron deficiency (e.g. from other nutritional deficiencies, inflammation, and parasitic infections). Direct nutritional interventions, such as large-scale food fortification, can improve micronutrient status, especially in vulnerable populations. Given the highly successful delivery of iodine through salt iodisation, fortifying salt with iodine and iron has been proposed as a method for preventing iron deficiency anaemia. Further investigation of the effect of double-fortified salt (i.e. with iron and iodine) on iron deficiency and related outcomes is warranted.  OBJECTIVES: To assess the effect of double-fortified salt (DFS) compared to iodised salt (IS) on measures of iron and iodine status in all age groups. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, five other databases, and two trial registries up to April 2021. We also searched relevant websites, reference lists, and contacted the authors of included studies. SELECTION CRITERIA: All prospective randomised controlled trials (RCTs), including cluster-randomised controlled trials (cRCTs), and controlled before-after (CBA) studies, comparing DFS with IS on measures of iron and iodine status were eligible, irrespective of language or publication status. Study reports published as abstracts were also eligible. DATA COLLECTION AND ANALYSIS: Three review authors applied the study selection criteria, extracted data, and assessed risk of bias. Two review authors rated the certainty of the evidence using GRADE. When necessary, we contacted study authors for additional information. We assessed RCTs, cRCTs and CBA studies using the Cochrane RoB 1 tool and Cochrane Effective Practice and Organisation of Care (EPOC) tool across the following domains: random sequence generation; allocation concealment; blinding of participants and personnel; blinding of outcome assessment; incomplete outcome data; selective reporting; and other potential sources of bias due to similar baseline characteristics, similar baseline outcome assessments, and declarations of conflicts of interest and funding sources. We also assessed cRCTs for recruitment bias, baseline imbalance, loss of clusters, incorrect analysis, and comparability with individually randomised studies. We assigned studies an overall risk of bias judgement (low risk, high risk, or unclear).  MAIN RESULTS: We included 18 studies (7 RCTs, 7 cRCTs, 4 CBA studies), involving over 8800 individuals from five countries. One study did not contribute to analyses. All studies used IS as the comparator and measured and reported outcomes at study endpoint.  With regards to risk of bias, five RCTs had unclear risk of bias, with some concerns in random sequence generation and allocation concealment, while we assessed two RCTs to have a high risk of bias overall, whereby high risk was noted in at least one or more domain(s). Of the seven cRCTs, we assessed six at high risk of bias overall, with one or more domain(s) judged as high risk and one cRCT had an unclear risk of bias with concerns around allocation and blinding. The four CBA studies had high or unclear risk of bias for most domains. The RCT evidence suggested that, compared to IS, DFS may slightly improve haemoglobin concentration (mean difference (MD) 0.43 g/dL, 95% confidence interval (CI) 0.23 to 0.63; 13 studies, 4564 participants; low-certainty evidence), but DFS may reduce urinary iodine concentration compared to IS (MD -96.86 µg/L, 95% CI -164.99 to -28.73; 7 studies, 1594 participants; low-certainty evidence), although both salts increased mean urinary iodine concentration above the cut-off deficiency. For CBA studies, we found DFS made no difference in haemoglobin concentration (MD 0.26 g/dL, 95% CI -0.10 to 0.63; 4 studies, 1397 participants) or urinary iodine concentration (MD -17.27 µg/L, 95% CI -49.27 to 14.73; 3 studies, 1127 participants). No studies measured blood pressure. For secondary outcomes reported in RCTs, DFS may result in little to no difference in ferritin concentration (MD -3.94 µg/L, 95% CI -20.65 to 12.77; 5 studies, 1419 participants; low-certainty evidence) or transferrin receptor concentration (MD -4.68 mg/L, 95% CI -11.67 to 2.31; 5 studies, 1256 participants; low-certainty evidence) compared to IS. However, DFS may reduce zinc protoporphyrin concentration (MD -27.26 µmol/mol, 95% CI -47.49 to -7.03; 3 studies, 921 participants; low-certainty evidence) and result in a slight increase in body iron stores (MD 1.77 mg/kg, 95% CI 0.79 to 2.74; 4 studies, 847 participants; low-certainty evidence). In terms of prevalence of anaemia, DFS may reduce the risk of anaemia by 21% (risk ratio (RR) 0.79, 95% CI 0.66 to 0.94; P = 0.007; 8 studies, 2593 participants; moderate-certainty evidence). Likewise, DFS may reduce the risk of iron deficiency anaemia by 65% (RR 0.35, 95% CI 0.24 to 0.52; 5 studies, 1209 participants; low-certainty evidence).  Four studies measured salt intake at endline, although only one study reported this for both groups. Two studies reported prevalence of goitre, while one CBA study measured and reported serum iron concentration. One study reported adverse effects. No studies measured hepcidin concentration. AUTHORS' CONCLUSIONS: Our findings suggest DFS may have a small positive impact on haemoglobin concentration and the prevalence of anaemia compared to IS, particularly when considering efficacy studies. Future research should prioritise studies that incorporate robust study designs and outcome measures (e.g. anaemia, iron status measures) to better understand the effect of DFS provision to a free-living population (non-research population), where there could be an added cost to purchase double-fortified salt. Adequately measuring salt intake, both at baseline and endline, and adjusting for inflammation will be important to understanding the true effect on measures of iron status.


Subject(s)
Anemia, Iron-Deficiency , Iodine , Iron Deficiencies , Anemia, Iron-Deficiency/epidemiology , Anemia, Iron-Deficiency/prevention & control , Child , Female , Hemoglobins , Humans , Iron , Micronutrients , Sodium Chloride , Sodium Chloride, Dietary
2.
Wiad Lek ; 75(6): 1486-1491, 2022.
Article in English | MEDLINE | ID: covidwho-1975856

ABSTRACT

OBJECTIVE: The aim: The purpose of the study is to increase the efficacy of сomprehensive treatment in elderly patients with COPD , who have suffered of coronavirus disease-COVID-19 in the last 3-6 months, by using nebulizer therapy with N-acetylcysteine and 3% hypertonic sodium chloride solution (Flu-Acyl broncho) and the drug glycine, to correct psychosomatic disorders. PATIENTS AND METHODS: Materials and methods: Under our supervision there were 60 elderly patients with COPD gr D, who underwent Covid 19 in the last 3-6 months, were under observation. The average age was 66.3±2.1 years. Рatients of the main and control groups were prescribed complex basic therapy. However, mucolytic therapy was administered to patients in the main group using combined drug - N-acetylcysteine and 3% hypertonic sodium chloride solution through a 5.0 №10 nebulizer. For the treatment of astheno-neurotic disorders of postcovidal syndrome was prescribed glycine 100 mg 2 times a day for 10 days. Subsequently, Flu-Acyl broncho through a nebulizer at 5.0 No.10, and glycised was used in courses once a day for 10 days per month. Patients in the control group were prescribed acetylcysteine 200 mg 3 times a day N10. RESULTS: Results: The results of observation for 6 months showed that in patients of the main group, recurrence of the disease was not observed. whereas in patients of the control group in 6 patients (20%). CONCLUSION: Conclusions: Comprehensive treatment of elderly patients with comorbid pathology - COPD group D and postcovidal syndrome, with the additional use of nebulizer delivery of the combined drug - N-acetylcysteine and 3% hypertonic sodium chloride solution in combination with the sedative drug glycine, promotes improving the quality of life in patients, reducing the duration of treatment, prevents recurrence and progression of COPD.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Acetylcysteine/therapeutic use , Aged , COVID-19/complications , COVID-19/drug therapy , Glycine/therapeutic use , Humans , Middle Aged , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Quality of Life , Sodium Chloride
4.
Sci Rep ; 12(1): 11546, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1921709

ABSTRACT

The COVID-19 pandemic motivated research on antiviral filtration used in personal protective equipment and HVAC systems. In this research, three coating compositions of NaCl, Tween 20 surfactant, and NaCl-Tween 20 were examined on polypropylene spun-bond filters. The pressure drop, coverage, and crystal size of the coating methods and compositions were measured. Also, in vitro plaque assays of the Phi6 Bacteriophage on Pseudomonas syringae as a simulation of an enveloped respiratory virus was performed to investigate the antiviral properties of the coating. NaCl and NaCl-Tween 20 increased the pressure drop in the range of 40-50 Pa for a loading of 5 mg/cm2. Tween 20 has shown an impact on the pressure drop as low as 10 Pa and made the filter surface more hydrophilic which kept the virus droplets on the surface. The NaCl-Tween 20 coated samples could inactivate 108 plaque forming units (PFU) of virus in two hours of incubation. Tween 20 coated filters with loading as low as 0.2 mg/cm2 reduced the activity of 108 PFU of virus from 109 to 102 PFU/mL after 2 h of incubation. NaCl-coated samples with a salt loading of 15 mg/cm2 could not have antiviral properties higher than reducing the viral activity from 109 to 105 PFU/mL in 4 h of incubation.


Subject(s)
Antiviral Agents , Polysorbates , SARS-CoV-2 , Sodium Chloride , Surface-Active Agents , Antiviral Agents/pharmacology , Lipoproteins , Polysorbates/chemistry , Polysorbates/pharmacology , Prospective Studies , RNA, Viral , SARS-CoV-2/drug effects , Sodium Chloride/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
5.
Nutrients ; 14(13)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1917645

ABSTRACT

In addition to the α, ß, and γ subunits of ENaC, human salt-sensing taste receptor cells (TRCs) also express the δ-subunit. At present, it is not clear if the expression and function of the ENaC δ-subunit in human salt-sensing TRCs is also modulated by the ENaC regulatory hormones and intracellular signaling effectors known to modulate salt responses in rodent TRCs. Here, we used molecular techniques to demonstrate that the G-protein-coupled estrogen receptor (GPER1), the transient receptor potential cation channel subfamily V member 1 (TRPV1), and components of the renin-angiotensin-aldosterone system (RAAS) are expressed in δ-ENaC-positive cultured adult human fungiform (HBO) taste cells. Our results suggest that RAAS components function in a complex with ENaC and TRPV1 to modulate salt sensing and thus salt intake in humans. Early, but often prolonged, symptoms of COVID-19 infection are the loss of taste, smell, and chemesthesis. The SARS-CoV-2 spike protein contains two subunits, S1 and S2. S1 contains a receptor-binding domain, which is responsible for recognizing and binding to the ACE2 receptor, a component of RAAS. Our results show that the binding of a mutated S1 protein to ACE2 decreases ACE2 expression in HBO cells. We hypothesize that changes in ACE2 receptor expression can alter the balance between the two major RAAS pathways, ACE1/Ang II/AT1R and ACE2/Ang-(1-7)/MASR1, leading to changes in ENaC expression and responses to NaCl in salt-sensing human fungiform taste cells.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Epithelial Sodium Channels/metabolism , Adult , Animals , Cell Line , Female , Gene Expression Regulation , Humans , Male , Mice , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Renin-Angiotensin System , Sodium Chloride/pharmacology , TRPV Cation Channels/genetics , Taste Buds/metabolism
6.
Mar Drugs ; 20(5)2022 May 17.
Article in English | MEDLINE | ID: covidwho-1896901

ABSTRACT

The history of saline nasal irrigation (SNI) is indeed a long one, beginning from the ancient Ayurvedic practices and gaining a foothold in the west at the beginning of the 20th century. Today, there is a growing number of papers covering the effects of SNI, from in vitro studies to randomized clinical trials and literature overviews. Based on the recommendations of most of the European and American professional associations, seawater, alone or in combination with other preparations, has its place in the treatment of numerous conditions of the upper respiratory tract (URT), primarily chronic (rhino)sinusitis, allergic rhinitis, acute URT infections and postoperative recovery. Additionally, taking into account its multiple mechanisms of action and mounting evidence from recent studies, locally applied seawater preparations may have an important role in the prevention of viral and bacterial infections of the URT. In this review we discuss results published in the past years focusing on seawater preparations and their use in clinical and everyday conditions, since such products provide the benefits of additional ions vs. saline, have an excellent safety profile and are recommended by most professional associations in the field of otorhinolaryngology.


Subject(s)
Saline Solution , Sinusitis , Administration, Intranasal , Chronic Disease , Humans , Seawater , Sinusitis/drug therapy , Sodium Chloride
8.
J Colloid Interface Sci ; 623: 541-551, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1851438

ABSTRACT

HYPOTHESIS: Vortex droplet interaction is crucial for understanding the route of disease transmission through expiratory jet where several such embedded droplets continuously interact with vortical structures of different strengths and sizes. EXPERIMENTS: A train of vortex rings with different vortex strength, quantified with vortex Reynolds number (Re'=0,53,221,297) are made to interact with an isolated levitated droplet, and the evolution dynamics is captured using shadowgraphy, particle image velocimetry (PIV), and backlight imaging technique. NaCl-DI water solution of 0, 1, 10 and 20 wt% concentrations are used as test fluids for the droplet. FINDINGS: The results show the dependence of evaporation characteristics on vortex strength, while the crystallization dynamics was found to be independent of it. A reduction of 12.23% and 14.6% in evaporation time was seen in case of de-ionized (DI) water and 1% wt NaCl solution respectively in presence of vortex ring train at Re'=221. In contrast to this, a minimal reduction in evaporation time (0.6% and 0.9% for DI water and 1% wt NaCl solution, respectively) is observed when Re' is increased from 221 to 297. The mechanisms for evaporation time reduction due to enhancement of convective heat and mass transfer from the droplet and shearing away of vapor layer by vortex ring interaction are discussed in this work.


Subject(s)
Sodium Chloride , Crystallization , Gases , Sodium Chloride/chemistry , Water/chemistry
9.
Eur Arch Otorhinolaryngol ; 279(9): 4623-4628, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1844363

ABSTRACT

PURPOSE: An association between COVID-19 and olfactory dysfunction has been noted in many patients worldwide. The olfactory adaptation process leads to an increase in intracellular calcium cation levels. Nitrilotriacetic acid trisodium salt has high selective chelation for calcium cations from olfactory mucus. The aim of this work is to test the effect of an intranasal nitrilotriacetic acid trisodium salt to lower the elevated calcium cations in COVID-19 patients with relevant symptoms of olfactory dysfunction. METHODS: Fifty-eight COVID-19 adult patients with relevant symptoms of olfactory dysfunction were enrolled in a prospective randomized controlled trial. They received a nasal spray containing either 0.9% sodium chloride or 2% nitrilotriacetic acid trisodium salt. Olfactory function was assessed before and after treatment using the Sniffin' Sticks test. Quantitative analysis of calcium cation concentration in nasal secretions was performed using a carbon paste ion-selective electrode. RESULTS: After the application of nitrilotriacetic acid trisodium salt compared to sodium chloride, a significant improvement from functional anosmia to healthy normosmia with significant decrease in calcium cation concentration was observed. CONCLUSIONS: Further collaborative research is needed to fully investigate the effect of an intranasal nitrilotriacetic acid trisodium salt in the treatment of olfactory disorders.


Subject(s)
COVID-19 , Olfaction Disorders , Adult , Calcium , Humans , Ions , Nitrilotriacetic Acid , Olfaction Disorders/diagnosis , Olfaction Disorders/drug therapy , Olfaction Disorders/etiology , Prospective Studies , Smell , Sodium Chloride
10.
N Engl J Med ; 386(9): 815-826, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1721751

ABSTRACT

BACKGROUND: Whether the use of balanced multielectrolyte solution (BMES) in preference to 0.9% sodium chloride solution (saline) in critically ill patients reduces the risk of acute kidney injury or death is uncertain. METHODS: In a double-blind, randomized, controlled trial, we assigned critically ill patients to receive BMES (Plasma-Lyte 148) or saline as fluid therapy in the intensive care unit (ICU) for 90 days. The primary outcome was death from any cause within 90 days after randomization. Secondary outcomes were receipt of new renal-replacement therapy and the maximum increase in the creatinine level during ICU stay. RESULTS: A total of 5037 patients were recruited from 53 ICUs in Australia and New Zealand - 2515 patients were assigned to the BMES group and 2522 to the saline group. Death within 90 days after randomization occurred in 530 of 2433 patients (21.8%) in the BMES group and in 530 of 2413 patients (22.0%) in the saline group, for a difference of -0.15 percentage points (95% confidence interval [CI], -3.60 to 3.30; P = 0.90). New renal-replacement therapy was initiated in 306 of 2403 patients (12.7%) in the BMES group and in 310 of 2394 patients (12.9%) in the saline group, for a difference of -0.20 percentage points (95% CI, -2.96 to 2.56). The mean (±SD) maximum increase in serum creatinine level was 0.41±1.06 mg per deciliter (36.6±94.0 µmol per liter) in the BMES group and 0.41±1.02 mg per deciliter (36.1±90.0 µmol per liter) in the saline group, for a difference of 0.01 mg per deciliter (95% CI, -0.05 to 0.06) (0.5 µmol per liter [95% CI, -4.7 to 5.7]). The number of adverse and serious adverse events did not differ meaningfully between the groups. CONCLUSIONS: We found no evidence that the risk of death or acute kidney injury among critically ill adults in the ICU was lower with the use of BMES than with saline. (Funded by the National Health and Medical Research Council of Australia and the Health Research Council of New Zealand; PLUS ClinicalTrials.gov number, NCT02721654.).


Subject(s)
Acute Kidney Injury/prevention & control , Critical Illness/therapy , Saline Solution/therapeutic use , Acute Kidney Injury/etiology , Adult , Aged , Critical Care/methods , Critical Illness/mortality , Double-Blind Method , Female , Fluid Therapy , Gluconates/adverse effects , Gluconates/therapeutic use , Humans , Intensive Care Units , Magnesium Chloride/adverse effects , Magnesium Chloride/therapeutic use , Male , Middle Aged , Potassium Chloride/adverse effects , Potassium Chloride/therapeutic use , Saline Solution/adverse effects , Sodium Acetate/adverse effects , Sodium Acetate/therapeutic use , Sodium Chloride/adverse effects , Sodium Chloride/therapeutic use , Treatment Outcome
11.
Am J Health Syst Pharm ; 79(12): 1011-1018, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1692261

ABSTRACT

PURPOSE: To compare the chemical stability of Captisol-enabled (CE) melphalan ("CE-melphalan"; Evomela, Acrotech Biopharma LLC) and propylene glycol (PG)-based melphalan ("PG-melphalan"; Alkeran, GlaxoSmithKline) admixtures prepared with 0.9% sodium chloride injection in polyvinyl chloride (PVC) bags or reconstituted vials stored at room temperature (RT) and under refrigeration. METHODS: Lyophilized CE-melphalan and generic PG-melphalan were reconstituted to 5 mg/mL with 0.9% sodium chloride injection or manufacturer-supplied diluent, respectively. The reconstituted vials were then diluted to the desired concentrations with 0.9% sodium chloride injection in PVC bags and were stored at RT (23oC) or under refrigeration (4oC). Aliquots were withdrawn from the bags and reconstituted vials of CE-melphalan and PG-melphalan immediately after preparation and at predetermined time intervals. Melphalan concentrations were measured using a validated high-performance liquid chromatography method. RESULTS: CE-melphalan reconstituted in PVC bags at concentrations of 1 and 2 mg/mL was stable for 6 and 24 hours, respectively, at RT and for 8 and 24 hours, respectively, at 4oC. PG-melphalan reconstituted in bags at 1, 1.5, and 2 mg/mL was stable for 1, 2, and 2 hours, respectively, at RT and for 2, 4, and 4 hours, respectively, at 4oC. Reconstituted CE-melphalan vials were stable for 48 hours at both RT and 4oC, whereas PG-melphalan vials were stable for 6 hours at RT but formed precipitate within 2 hours at 4oC. CONCLUSION: CE-melphalan remained stable longer than generic PG-melphalan under the test conditions. CE-melphalan at 2 mg/mL has 24-hour stability at RT and can be used for extended infusion times or may be compounded ahead of time. Reconstituted CE-melphalan vials are stable for 48 hours at both RT and 4oC.


Subject(s)
Melphalan , Refrigeration , Chromatography, High Pressure Liquid , Drug Packaging , Drug Stability , Drug Storage , Humans , Melphalan/chemistry , Polyvinyl Chloride/chemistry , Propylene Glycols , Sodium Chloride/chemistry , Temperature , beta-Cyclodextrins
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1642082

ABSTRACT

The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic-inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability.


Subject(s)
Calcium Chloride/chemistry , Models, Chemical , SARS-CoV-2/chemistry , Serum Albumin/chemistry , Sodium Chloride/chemistry , COVID-19/virology , Diffusion , Disinfection/methods , Humans , Humidity , Kinetics , Microbial Viability , Phase Transition , Surface Properties
13.
BMJ Open ; 11(5): e049964, 2021 05 05.
Article in English | MEDLINE | ID: covidwho-1259011

ABSTRACT

INTRODUCTION: Edinburgh and Lothians' Viral Intervention Study Kids is a parallel, open-label, randomised controlled trial of hypertonic saline (HS) nose drops (~2.6% sodium chloride) vs standard care in children <7 years of age with symptoms of an upper respiratory tract infection (URTI). METHODS AND ANALYSIS: Children are recruited prior to URTI or within 48 hours of developing URTI symptoms by advertising in areas such as local schools/nurseries, health centres/hospitals, recreational facilities, public events, workplaces, local/social media. Willing parents/guardians, of children <7 years of age will be asked to contact the research team at their local site. Children will be randomised to either a control arm (standard symptomatic care), or intervention arm (three drops/nostril of HS, at least four times a day, until 24 hours after asymptomatic or a maximum of 28 days). All participants are requested to provide a nasal swab at the start of the study (intervention arm: before HS drops) and then daily for four more days. Parent/guardian complete a validated daily diary, an end of illness diary, a satisfaction questionnaire and a wheeze questionnaire (day 28). The parent/guardian of a child in the intervention arm is taught to prepare HS nose drops. Parent/guardian of children asymptomatic at recruitment are requested to inform the research team within 48 hours of their child developing an URTI and follow the instructions already provided. The day 28 questionnaire determines if the child experienced a wheeze following illness. Participation in the study ends on day 28. ETHICS AND DISSEMINATION: The study has been approved by the West of Scotland Research Ethics Service (18/WS/0080). It is cosponsored by Academic and Clinical Central Office for Research and Development-a partnership between the University of Edinburgh and National Health Service Lothian Health Board. The findings will be disseminated through peer-reviewed publications, conference presentations and via the study website. TRIAL REGISTRATION NUMBER: NCT03463694.


Subject(s)
COVID-19 , Respiratory Tract Infections , Sodium Chloride , Administration, Intranasal , Child , Humans , Randomized Controlled Trials as Topic , Respiratory Tract Infections/drug therapy , SARS-CoV-2 , Saline Solution , Scotland , Sodium Chloride/therapeutic use , State Medicine
14.
J Colloid Interface Sci ; 600: 1-13, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1237742

ABSTRACT

HYPOTHESIS: The droplets ejected from an infected host during expiratory events can get deposited as fomites on everyday use surfaces. Recognizing that these fomites can be a secondary route for disease transmission, exploring the deposition pattern of such sessile respiratory droplets on daily-use substrates thus becomes crucial. EXPERIMENTS: The used surrogate respiratory fluid is composed of a water-based salt-protein solution, and its precipitation dynamics is studied on four different substrates (glass, ceramic, steel, and PET). For tracking the final deposition of viruses in these droplets, 100 nm virus emulating particles (VEP) are used and their distribution in dried-out patterns is identified using fluorescence and SEM imaging techniques. FINDINGS: The final precipitation pattern and VEP deposition strongly depend on the interfacial transport processes, edge evaporation, and crystallization dynamics. A constant contact radius mode of evaporation with a mixture of capillary and Marangoni flows results in spatio-temporally varying edge deposits. Dendritic and cruciform-shaped crystals are majorly seen in all substrates except on steel, where regular cubical crystals are formed. The VEP deposition is higher near the three-phase contact line and crystal surfaces. The results showed the role of interfacial processes in determining the initiation of fomite-type infection pathways in the context of COVID-19.


Subject(s)
COVID-19 , Fomites , Crystallization , Humans , SARS-CoV-2 , Sodium Chloride
15.
J Occup Environ Hyg ; 17(11-12): 538-545, 2020.
Article in English | MEDLINE | ID: covidwho-790863

ABSTRACT

Powered air-purifying respirators (PAPRs) that offer protection from particulates are deployed in different workplace environments. Usage of PAPRs by healthcare workers is rapidly increasing; these respirators are often considered the best option in healthcare settings, particularly during public health emergency situations, such as outbreaks of pandemic diseases. At the same time, lack of user training and certain vigorous work activities may lead to a decrease in a respirator's performance. There is a critical need for real-time performance monitoring of respiratory protective devices, including PAPRs. In this effort, a new robust and low-cost real-time performance monitor (RePM) capable of evaluating the protection offered by a PAPR against aerosol particles at a workplace was developed. The new device was evaluated on a manikin and on human subjects against a pair of condensation nuclei counters (P-Trak) used as the reference protection measurement system. The outcome was expressed as a manikin-based protection factor (mPF) and a Simulated Workplace Protection Factor (SWPF) determined while testing on subjects. For the manikin-based testing, the data points collected by the two methods were plotted against each other; a near-perfect correlation was observed with a correlation coefficient of 0.997. This high correlation is particularly remarkable since RePM and condensation particle counter (CPC) measure in different particle size ranges. The data variability increased with increasing mPF. The evaluation on human subjects demonstrated that RePM prototype provided an excellent Sensitivity (96.3% measured on human subjects at a response time of 60 sec) and a Specificity of 100%. The device is believed to be the first of its kind to quantitatively monitor PAPR performance while the wearer is working; it is small, lightweight, and does not interfere with job functions.


Subject(s)
Aerosols/analysis , Equipment Failure Analysis/methods , Respiratory Protective Devices/standards , Manikins , Occupational Exposure/prevention & control , Particle Size , Sensitivity and Specificity , Sodium Chloride/chemistry
16.
ACS Appl Mater Interfaces ; 13(14): 16084-16096, 2021 Apr 14.
Article in English | MEDLINE | ID: covidwho-1164786

ABSTRACT

As COVID-19 exemplifies, respiratory diseases transmitted through aerosols or droplets are global threats to public health, and respiratory protection measures are essential first lines of infection prevention and control. However, common face masks are single use and can cause cross-infection due to the accumulated infectious pathogens. We developed salt-based formulations to coat membrane fibers to fabricate antimicrobial filters. Here, we report a mechanistic study on salt-induced pathogen inactivation. The salt recrystallization following aerosol exposure was characterized over time on sodium chloride (NaCl), potassium sulfate (K2SO4), and potassium chloride (KCl) powders and coatings, which revealed that NaCl and KCl start to recrystallize within 5 min and K2SO4 within 15 min. The inactivation kinetics observed for the H1N1 influenza virus and Klebsiella pneumoniae matched the salt recrystallization well, which was identified as the main destabilizing mechanism. Additionally, the salt-coated filters were prepared with different methods (with and without a vacuum process), which led to salt coatings with different morphologies for diverse applications. Finally, the salt-coated filters caused a loss of pathogen viability independent of transmission mode (aerosols or droplets), against both DI water and artificial saliva suspensions. Overall, these findings increase our understanding of the salt-recrystallization-based technology to develop highly versatile antimicrobial filters.


Subject(s)
Filtration/instrumentation , Influenza A Virus, H1N1 Subtype/drug effects , Klebsiella pneumoniae/drug effects , Masks , Potassium Chloride/chemistry , Sodium Chloride/chemistry , Sulfates/chemistry , Aerosols , Air Filters , Crystallization , Kinetics , Membranes, Artificial , Polypropylenes , Powders , Respiratory Protective Devices , Temperature , X-Ray Diffraction
17.
Am J Case Rep ; 22: e930135, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1148367

ABSTRACT

BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic of 2020, varied presentations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. The present report is of a case of hyponatremia and encephalopathy due to the syndrome of inappropriate antidiuretic hormone secretion (SIADH) as the main presentation of SARS-CoV-2 infection in a 55-year-old woman. CASE REPORT A 55-year-old woman with type II diabetes mellitus presented with confusion and slurring of speech, with a temperature of 38.5°C, heart rate of 120 bpm, blood pressure of 159/81 mmHg, and oxygen saturation of 98% on room air. She did not have edema on examination. Laboratory testing showed a low sodium level of 116 mEq/L (reference range, 135-145 mEq/L) with urine osmolarity of 364 mOsm/kg, urinary sodium of 69 mEq/L, urinary potassium of 15.6 mEq/L, and serum osmolarity of 251 mOsm/kg. The patient had normal serum thyroid-stimulating hormone and cortisol levels. A chest X-ray should no pulmonary infiltrates nor did a lumbar puncture reveal signs of infection. A real-time SARS-CoV-2 polymerase chain reaction assay was positive for COVID-19. Brain imaging with computed tomography was negative for acute infarct, intracranial hemorrhage, and mass effect. Based on findings from laboratory testing and physical examination, a diagnosis of SIADH was made. The patient was treated with 3% hypertonic saline, followed by salt tablets and fluid restriction, with improvement in her clinical symptoms and serum sodium level. CONCLUSIONS The present report is of a rare but previously reported association with SARS-CoV-2 infection. Encephalopathy and hyponatremia associated with SIADH without pneumonia or other symptoms of infection should be an indication for testing for SARS-CoV-2 infection.


Subject(s)
Brain Diseases/virology , COVID-19/complications , Hyponatremia/virology , Inappropriate ADH Syndrome/virology , COVID-19/diagnosis , Diabetes Mellitus, Type 2/complications , Female , Humans , Middle Aged , Saline Solution, Hypertonic/therapeutic use , Sodium/blood , Sodium Chloride/therapeutic use
18.
Environ Sci Technol ; 55(8): 4880-4888, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1147821

ABSTRACT

Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol, and silica RNA capture matrices to recover sixfold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, which have been proposed as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and in our experience, 20 samples can be processed by one lab technician in approximately 2 h. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Sewage , Silicon Dioxide , Sodium Chloride , Waste Water
19.
J Biomol Struct Dyn ; 40(12): 5653-5664, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1031804

ABSTRACT

2020 will be remembered worldwide for the outbreak of Coronavirus disease (COVID-19), which quickly spread until it was declared as a global pandemic. The main protease (Mpro) of SARS-CoV-2, a key enzyme in coronavirus, represents an attractive pharmacological target for inhibition of SARS-CoV-2 replication. Here, we evaluated whether the anti-inflammatory drug Ibuprofen, may act as a potential SARS-CoV-2 Mpro inhibitor, using an in silico study. From molecular dynamics (MD) simulations, we also evaluated the influence of ionic strength on the affinity and stability of the Ibuprofen-Mpro complexes. The docking analysis shows that R(-)Ibuprofen and S(+)Ibuprofen isomers can interact with multiple key residues of the main protease, through hydrophobic interactions and hydrogen bonds, with favourable binding energies (-6.2 and -5.7 kcal/mol, respectively). MM-GBSA and MM-PBSA calculations confirm the affinity of these complexes, in terms of binding energies. It also demonstrates that the ionic strength modifies significantly their binding affinities. Different structural parameters calculated from the MD simulations (120 ns) reveal that these complexes are conformational stable in the different conditions analysed. In this context, the results suggest that the condition 2 (0.25 NaCl) bind more tightly the Ibuprofen to Mpro than the others conditions. From the frustration analysis, we could characterize two important regions (Cys44-Pro52 and Linker loop) of this protein involved in the interaction with Ibuprofen. In conclusion, our findings allow us to propose that racemic mixtures of the Ibuprofen enantiomers might be a potential treatment option against SARS-CoV-2 Mpro. However, further research is necessary to determinate their possible medicinal use.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Sodium Chloride , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Ibuprofen/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
20.
J Hosp Infect ; 108: 113-119, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1014625

ABSTRACT

BACKGROUND: The coronavirus disease 2019 pandemic has caused problems with respirator supplies. Re-use may minimize the impact of the shortage, but requires the availability of an efficient and safe decontamination method. AIM: To determine whether low-temperature-steam-2%-formaldehyde (LTSF) sterilization is effective, preserves the properties of filtering facepiece (FFP) respirators and allows safe re-use. METHODS: Fourteen unused FFP2, FFP3 and N95 respirator models were subjected to two cycles of decontamination cycles. After the second cycle, each model was inspected visually and accumulated residual formaldehyde levels were analysed according to EN 14180. After one and two decontamination cycles, the fit factor (FF) of each model was tested, and penetration tests with sodium chloride aerosols were performed on five models. FINDINGS: Decontamination physically altered three of the 14 models. All of the residual formaldehyde values were below the permissible threshold. Irregular decreases and increases in FF were observed after each decontamination cycle. In the sodium chloride aerosol penetration test, three models obtained equivalent or superior results to those of the FFP classification with which they were marketed, both at baseline and after one and two cycles of decontamination, and two models had lower filtering capacity. CONCLUSION: One and two decontamination cycles using LTSF did not alter the structure of most (11/14) respirators tested, and did not degrade the fit or filtration capacity of any of the analysed respirators. The residual formaldehyde levels complied with EN 14180. This reprocessing method could be used in times of shortage of personal protective equipment.


Subject(s)
Decontamination/methods , Formaldehyde/pharmacology , Respiratory Protective Devices/virology , Sterilization/methods , Adult , Aerosols/adverse effects , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Equipment Reuse , Formaldehyde/analysis , Humans , Male , Masks/trends , Masks/virology , Personal Protective Equipment/supply & distribution , Respiratory Protective Devices/supply & distribution , SARS-CoV-2/genetics , Sodium Chloride/analysis , Steam/adverse effects , Ventilators, Mechanical/supply & distribution , Ventilators, Mechanical/virology
SELECTION OF CITATIONS
SEARCH DETAIL