Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Environ Toxicol Chem ; 41(12): 3095-3115, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2103551

ABSTRACT

Use of three topical antiseptic compounds-benzalkonium chloride (BAC), benzethonium chloride (BZT), and chloroxylenol (PCMX)-has recently increased because of the phaseout of other antimicrobial ingredients (such as triclosan) in soaps and other disinfecting and sanitizing products. Further, use of sanitizing products in general increased during the coronavirus (COVID-19) pandemic. We assessed the environmental safety of BAC, BZT, and PCMX based on best available environmental fate and effects data from the scientific literature and privately held sources. The ecological exposure assessment focused on aquatic systems receiving effluent from wastewater-treatment plants (WWTPs) and terrestrial systems receiving land-applied WWTP biosolids. Recent exposure levels were characterized based on environmental monitoring data supplemented by modeling, while future exposures were modeled based on a hypothetical triclosan replacement scenario. Hazard profiles were developed based on acute and chronic studies examining toxicity to aquatic life (fish, invertebrates, algae, vascular plants) and terrestrial endpoints (plants, soil invertebrates, and microbial functions related to soil fertility). Risks to higher trophic levels were not assessed because these compounds are not appreciably bioaccumulative. The risk analysis indicated that neither BZT nor PCMX in any exposure media is likely to cause adverse ecological effects under the exposure scenarios assessed in the present study. Under these scenarios, total BAC exposures are at least three times less than estimated effect thresholds, while margins of safety for freely dissolved BAC are estimated to be greater than an order of magnitude. Because the modeling did not specifically account for COVID-19 pandemic-related usage, further environmental monitoring is anticipated to understand potential changes in environmental exposures as a result of increased antiseptic use. The analysis presented provides a framework to interpret future antiseptic monitoring results, including monitoring parameters and modeling approaches to address bioavailability of the chemicals of interest. Environ Toxicol Chem 2022;41:3095-3115. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Triclosan , Animals , Humans , Benzethonium , Benzalkonium Compounds/toxicity , Chlorides , Triclosan/toxicity , Pandemics , Anti-Infective Agents, Local/toxicity , Soil , Risk Assessment
2.
PLoS One ; 17(10): e0274793, 2022.
Article in English | MEDLINE | ID: covidwho-2079736

ABSTRACT

BACKGROUND: Wastewater-based epidemiology (WBE) surveillance as an early warning system (EWS) for monitoring community transmission of SARS-CoV-2 in low- and middle-income country (LMIC) settings, where diagnostic testing capacity is limited, needs further exploration. We explored the feasibility to conduct a WBE surveillance in Indonesia, one of the global epicenters of the COVID-19 pandemic in the middle of 2021, with the fourth largest population in the world where sewer and non-sewered sewage systems are implemented. The feasibility and resource capacity to collect samples on a weekly or fortnightly basis with grab and/or passive sampling methods, as well as to conduct qualitative and quantitative identification of SARS-CoV-2 ribonucleic acid (RNA) using real-time RT-PCR (RT-qPCR) testing of environmental samples were explored. MATERIALS AND METHODS: We initiated a routine surveillance of wastewater and environmental sampling at three predetermined districts in Special Region of Yogyakarta Province. Water samples were collected from central and community wastewater treatment plants (WWTPs), including manholes flowing to the central WWTP, and additional soil samples were collected for the near source tracking (NST) locations (i.e., public spaces where people congregate). RESULTS: We began collecting samples in the Delta wave of the COVID-19 pandemic in Indonesia in July 2021. From a 10-week period, 54% (296/544) of wastewater and environmental samples were positive for SARS-CoV-2 RNA. The sample positivity rate decreased in proportion with the reported incidence of COVID-19 clinical cases in the community. The highest positivity rate of 77% in week 1, was obtained for samples collected in July 2021 and decreased to 25% in week 10 by the end of September 2021. CONCLUSION: A WBE surveillance system for SARS-CoV-2 in Indonesia is feasible to monitor the community burden of infections. Future studies testing the potential of WBE and EWS for signaling early outbreaks of SARS-CoV-2 transmissions in this setting are required.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Feasibility Studies , Humans , Indonesia/epidemiology , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sewage , Soil , Waste Water/analysis , Water/analysis
3.
Lancet Glob Health ; 10(11): e1600-e1611, 2022 11.
Article in English | MEDLINE | ID: covidwho-2069829

ABSTRACT

BACKGROUND: In line with movement restrictions and physical distancing essential for the control of the COVID-19 pandemic, WHO recommended postponement of all neglected tropical disease (NTD) control activities that involve community-based surveys, active case finding, and mass drug administration in April, 2020. Following revised guidance later in 2020, and after interruptions to NTD programmes of varying lengths, NTD programmes gradually restarted in the context of an ongoing pandemic. However, ongoing challenges and service gaps have been reported. This study aimed to evaluate the potential effect of the programmatic interruptions and strategies to mitigate this effect. METHODS: For seven NTDs, namely soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis, trachoma, visceral leishmaniasis, and human African trypanosomiasis, we used mathematical transmission models to simulate the effect of programme interruptions on the dynamics of each of these diseases in different endemic settings. We also explored the potential benefit of implementing mitigation strategies, primarily in terms of minimising the delays to control targets. FINDINGS: We show that the effect of the COVID-19-induced interruption in terms of delay to achieving elimination goals might in some cases be much longer than the duration of the interruption. For schistosomiasis, onchocerciasis, trachoma, and visceral leishmaniasis, a mean delay of 2-3 years for a 1-year interruption is predicted in areas of highest prevalence. We also show that these delays can largely be mitigated by measures such as additional mass drug administration or enhanced case-finding. INTERPRETATION: The COVID-19 pandemic has brought infectious disease control to the forefront of global consciousness. It is essential that the NTDs, so long neglected in terms of research and financial support, are not overlooked, and remain a priority in health service planning and funding. FUNDING: Bill & Melinda Gates Foundation, Medical Research Council, and the UK Foreign, Commonwealth & Development Office.


Subject(s)
COVID-19 , Leishmaniasis, Visceral , Onchocerciasis , Schistosomiasis , Trachoma , Tropical Medicine , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Leishmaniasis, Visceral/epidemiology , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Onchocerciasis/prevention & control , Pandemics , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Soil , Trachoma/epidemiology
4.
PLoS Negl Trop Dis ; 16(10): e0010826, 2022 10.
Article in English | MEDLINE | ID: covidwho-2065102

ABSTRACT

BACKGROUND: The coronavirus Disease 2019 (COVID-19) is a respiratory disease that has caused extensive ravages worldwide since being declared a pandemic by the World Health Organization (WHO). Unlike initially predicted by WHO, the incidence and severity of COVID-19 appeared milder in many Low-to-Middle-Income Countries (LMIC). To explain this noticeable disparity between countries, many hypotheses, including socio-demographic and geographic factors, have been put forward. This study aimed to estimate the possible association of parasitic diseases with COVID-19 as either protective agents or potential risk factors. METHODS/PRINCIPAL FINDINGS: A country-level ecological study using publicly available data of countries was conducted. We conceptualized the true number of COVID-19 infections based on a function of test positivity rate (TPR) and employed linear regression analysis to assess the association between the outcome and parasitic diseases. We considered demographic, socioeconomic, and geographic confounders previously suggested. A notable heterogeneity was observed across WHO regions. The countries in Africa (AFRO) showed the lowest rates of COVID-19 incidence, and the countries in the Americas (AMRO) presented the highest. The multivariable model results were computed using 165 countries, excluding missing values. In the models analyzed, lower COVID-19 incidence rates were consistently observed in malaria-endemic countries, even accounting for potential confounding variables, Gross Domestic Product (GDP) per capita, the population aged 65 and above, and differences in the duration of COVID-19. However, the other parasitic diseases were not significantly associated with the spread of the pandemic. CONCLUSIONS/SIGNIFICANCE: This study suggests that malaria prevalence is an essential factor that explains variability in the observed incidence of COVID-19 cases at the national level. Potential associations of COVID-19 with schistosomiasis and soil-transmitted helminthiases (STHs) are worthy of further investigation but appeared unlikely, based on this analysis, to be critical factors of the variability in COVID-19 epidemic trends. The quality of publicly accessible data and its ecological design constrained our research, with fundamental disparities in monitoring and testing capabilities between countries. Research at the subnational or individual level should be conducted to explore hypotheses further.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Gross Domestic Product , Risk Factors , Soil , Global Health
5.
Appl Microbiol Biotechnol ; 106(21): 6953-6962, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2048216

ABSTRACT

The control of infectious diseases has always been a top medical priority. For years during the so-called antibiotic era, we enjoyed prolonged life expectancy and the benefits of superior pathogen control. The devastating failure of the medical system, agriculture and pharmaceutical companies and the general population to appreciate and safeguard these benefits is now leading us into a grim post-antibiotic era. Antimicrobial resistance (AMR) refers to microorganisms becoming resistant to antibiotics that were designed and expected to kill them. Prior to the COVID-19 pandemic, AMR was recognised by the World Health Organization as the central priority area with growing public awareness of the threat AMR now presents. The Review on Antimicrobial Resistance, a project commissioned by the UK government, predicted that the death toll of AMR could be one person every 3 seconds, amounting to 10 million deaths per year by 2050. This review aims to raise awareness of the evergrowing extensiveness of antimicrobial resistance and identify major sources of this adversity, focusing on agriculture's role in this problem and its solutions. KEYPOINTS: • Widespread development of antibiotic resistance is a major global health risk. • Antibiotic resistance is abundant in agricultural produce, soil, food, water, air and probiotics. • New approaches are being developed to control and reduce antimicrobial resistance.


Subject(s)
COVID-19 , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pandemics , Agriculture , Soil , Water , Pharmaceutical Preparations
6.
Sci Rep ; 12(1): 16481, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2050552

ABSTRACT

Observations of air pollution in Krakow have shown that air quality has been improved during the last decade. In the presented study two factors affecting the physicochemical characteristic of PM2.5 fraction at AGH station in Krakow were observed. One is the ban of using solid fuels for heating purposes and the second is COVID-19 pandemic in Krakow. The PM2.5 fraction was collected during the whole year every 3rd day between 2nd March 2020 and 28th February 2021 at AGH station in Krakow. In total 110 PM2.5 fraction samples were collected. The chemical composition was determined for these samples. The elemental analysis was performed by energy dispersive X-ray fluorescence (EDXRF) technique, ions analysis was performed by ion chromatography (IC) and black carbon by optical method. In order to identify the emission sources the positive matrix factorization (PMF) was used. The results of such study were compared to similar analysis performed for PM2.5 for the period from June 2018 to May 2019 at AGH station in Krakow. The PM2.5 concentration dropped by 25% in 2020/2021 in comparison to 2018/2019 at this station. The concentrations of Si, K, Fe, Zn and Pb were lowering by 43-64% in the year 2020/2021 in comparison to 2018/2019. Cu, Mn, Zn and Pb come from mechanical abrasion of brakes and tires while Ti, Fe, Mn and Si are crustal species. They are the indicators of road dust (non-exhaust traffic source). Moreover, the annual average contribution of traffic/industrial/soil/construction work source was reduced in 2020/2021 in comparison to 2018/2019. As well the annual average contribution of fuels combustion was declining by 22% in 2020/2021 in comparison to 2018/2019. This study shows that the ban and lockdown, during COVID-19 pandemic, had significant impact on the characteristic of air pollution in Krakow.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , COVID-19/epidemiology , Carbon/analysis , Communicable Disease Control , Dust/analysis , Environmental Monitoring/methods , Humans , Ions/analysis , Lead/analysis , Pandemics , Particulate Matter/analysis , Poland/epidemiology , Soil , Vehicle Emissions/analysis
7.
Proc Biol Sci ; 289(1981): 20220065, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-2037618

ABSTRACT

Transgenerational plasticity is a form of non-genetic inheritance that can reduce or enhance offspring fitness depending on parental stress. Yet, the adaptive value of such parental environmental effects and whether their expression varies among populations remain largely unknown. We used self-fertilized lines from climatically distinct populations of the crop wild relative Lupinus angustifolius. In the parental generation, full-siblings were grown in two contrasting watering environments. Then, to robustly separate the within-generation and transgenerational response to drought, we reciprocally assigned the offspring of parents to the same experimental treatments. We measured key functional traits and assessed lifetime reproductive fitness. Offspring of drought-stressed parents produced less reproductive biomass, but a similar number of lighter seeds, in dry soil compared to offspring of genetically identical, well-watered parents, an effect not mediated by differences in seed provisioning. Importantly, while the offspring of parents grown in the favourable environment responded to drought by slightly increasing individual seed mass, the pattern of plasticity of the offspring of drought-grown parents showed the opposite direction, and the negative effects of parental drought on seed mass were more pronounced in populations from cooler and moist habitats. Overall, our results show that parental effects may override immediate adaptive responses to drought and provide evidence of population-level variation in the expression of transgenerational plasticity.


Subject(s)
Adaptation, Physiological , Droughts , Ecosystem , Seeds/physiology , Soil
8.
Chemosphere ; 307(Pt 4): 136025, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2031190

ABSTRACT

In recent years the funeral industry has drawn attention from the scientific community concerning the potential pollution of the environment and the urban environment. In this review, the pollution caused by the cemeteries and crematoria around the world was addressed. The traditional burial leads to the production of ions, in the form of organic and heavy metals, bacteria, fungi, and viruses, that spread along with the soil and underwater. The crematoria produce small particles, trace gases (SOx, NOx, CO), and toxic organic volatiles. The effluent generated by both methods can lead to several environmental problems and further threaten human health. The current solution for the cemeteries in the development of a system in which effluent generated by the traditional burials are collected and treated before realizing in the environment. In addition to that, the green burial should be an alternative, since the corpse does not go through the embalming process, thus eliminating the presence of any undesired chemicals, that are further leached onto the environment. The crematoria should be employed as it is, however, the gas treatment station should be employed, to ensure the minimization of the impact on the environment. Last, future researches regarding the treatment of the cemeteries leached still need to be explored as well as the optimization and further development of the crematoria gas treatment process.


Subject(s)
Cremation , Metals, Heavy , Cemeteries , Environmental Pollution , Gases , Humans , Metals, Heavy/analysis , Soil
10.
Nat Rev Microbiol ; 20(9): 510, 2022 09.
Article in English | MEDLINE | ID: covidwho-2016735
11.
PLoS One ; 17(8): e0273394, 2022.
Article in English | MEDLINE | ID: covidwho-2002332

ABSTRACT

The amount of medical waste, especially infusion bottles, is a problem for environmental pollution. Improper management of infusion bottle waste can have an impact on disease transmission. The medical waste treatment used high technology and high costs will be a financial burden, so simple and effective treatment innovations is needed. This study uses an experimental method of removing bacteria from infusion bottles using a mixture of water and Andoso soil as a solution for washing infusion bottle waste. The soil solution concentration used in washing was 45% with a contact time of 2 minutes. The experiment was carried out with two repetitions. The treatment effect on decreasing the number of bacteria using a multiple linear regression mathematical model. The results showed that the disinfection process of bacterial-contaminated infusion bottles using water required rinsing up to six times, whereas using 45% andosol soil solution only rinsed once. The effectiveness of the disinfection of infusion bottles contaminated with bacteria using soil solution reduces the number of bacteria by 98%.


Subject(s)
Medical Waste , Soil , Bacteria , Conservation of Natural Resources , Disinfection/methods , Water
12.
Environ Sci Pollut Res Int ; 29(46): 69341-69366, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2000065

ABSTRACT

The emergence of various diseases during the COVID-19 pandemic made health workers more attentive, and one of the new pathogens is the black fungus (mucormycosis). As a result, millions of lives have already been lost. As a result of the mutation, the virus is constantly changing its traits, including the rate of disease transmission, virulence, pathogenesis, and clinical signs. A recent analysis revealed that some COVID-19 patients were also coinfected with a fungal disease called mucormycosis (black fungus). India has already categorized the COVID-19 patient black fungus outbreak as an epidemic. Only a few reports are observed in other countries. The immune system is weakened by COVID-19 medication, rendering it more prone to illnesses like black fungus (mucormycosis). COVID-19, which is caused by a B.1.617 strain of the SARS-CoV-2 virus, has been circulating in India since April 2021. Mucormycosis is a rare fungal infection induced by exposure to a fungus called mucormycete. The most typically implicated genera are Mucor rhyzuprhizopusdia and Cunninghamella. Mucormycosis is also known as zygomycosis. The main causes of infection are soil, dumping sites, ancient building walls, and other sources of infection (reservoir words "mucormycosis" and "zygomycosis" are occasionally interchanged). Zygomycota, on the other hand, has been identified as polyphyletic and is not currently included in fungal classification systems; also, zygomycosis includes Entomophthorales, but mucormycosis does not. This current review will be focused on the etiology and virulence factors of COVID-19/mucormycosis coinfections in COVID-19-associated mucormycosis patients, as well as their prevalence, diagnosis, and treatment.


Subject(s)
COVID-19 , Mucormycosis , Humans , Mucor , Mucormycosis/complications , Mucormycosis/epidemiology , Mucormycosis/microbiology , Pandemics , SARS-CoV-2 , Soil , Virulence Factors
13.
Environ Sci Pollut Res Int ; 29(39): 59118-59126, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2000057

ABSTRACT

Since the year 2020, the use of plastic as a strategy to mitigate the spread of COVID-19 disease has been given substantial attention. Global environmental contamination of plastic creates waste and is a known threat to soil ecosystems as a main sink of microplastics. However, there is still considerable uncertainty about microplastics controlling soil properties alteration. Therefore, we carried out an incubation experiment with soil and Carex stenophylla Wahlenb., which are the dominant soil and grass species in semi-arid regions. We investigated the effect of polymer polyethylene terephthalate (PET) concentrations (0%, 1%, 3%, and 5%) on C. stenophylla growth and soil ammonium-N and nitrate-N, organic matter content, pH, soil aggregates, and soil respiration. When soils were exposed to PET microplastics, fewer seeds germinated (62.8 ± 32%) but not significantly (p value > 0.05) when soils were treated to 0, 1, 3, and 0.5% PET. Shoot height was also not effectively reduced with PET. The soil pH was considerably lower when exposed to higher PET compared to all other treatments with the soil exposed to 5% w/w PET for both unplanted and planted, being 0.84 and 0.54 units, respectively, lower than the controls. The soil microbial respiration under exposure to PET was considerably increased in comparison to control samples. Moreover, the presence of PET resulted in potential alterations of soil stability, and with PET present soil stability increased. In conclusion, PET microplastics cannot significantly affect the development of C. stenophylla but could affect crucial soil properties. In addition, changes occurred with increased variability in soil ammonium-N and nitrate-N, particularly at a high PET ratio.


Subject(s)
Ammonium Compounds , COVID-19 , Ecosystem , Microplastics , Nitrates , Plastics , Poaceae , Polyethylene Terephthalates , Soil/chemistry
14.
J Environ Qual ; 51(5): 1066-1082, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966053

ABSTRACT

During the COVID-19 pandemic, wastewater surveillance was leveraged as a powerful tool for monitoring community-scale health. Further, the well-known persistence of some pharmaceuticals through wastewater treatment plants spurred concerns that increased usage of pharmaceuticals during the pandemic would increase the concentrations in wastewater treatment plant effluent. We collected weekly influent and effluent samples from May 2020 through May 2021 from two wastewater treatment plants in central Pennsylvania, the Penn State Water Reclamation Facility and the University Area Joint Authority, that provide effluent for beneficial reuse, including for irrigation. Samples were analyzed for severe acute respiratory syndrome coronavirus 2 (influent only), two over-the-counter medicines (acetaminophen and naproxen), five antibiotics (ampicillin, doxycycline, ofloxacin, sulfamethoxazole, and trimethoprim), two therapeutic agents (remdesivir and dexamethasone), and hydroxychloroquine. Although there were no correlations between pharmaceutical and virus concentration, remdesivir detection occurred when the number of hospitalized patients with COVID-19 increased, and dexamethasone detection co-occurred with the presence of patients with COVID-19 on ventilators. Additionally, Penn State decision-making regarding instruction modes explained the temporal variation of influent pharmaceutical concentrations, with detection occurring primarily when students were on campus. Risk quotients calculated for pharmaceuticals with known effective and lethal concentrations at which 50% of a population is affected for fish, daphnia, and algae were generally low in the effluent; however, some acute risks from sulfamethoxazole were high when students returned to campus. Remdesivir and dexamethasone persisted through the wastewater treatment plants, thereby introducing novel pharmaceuticals directly to soils and surface water. These results highlight connections between human health and water quality and further demonstrate the broad utility of wastewater surveillance.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Acetaminophen , Ampicillin , Animals , Anti-Bacterial Agents/analysis , Dexamethasone , Doxycycline , Environmental Monitoring/methods , Humans , Hydroxychloroquine , Naproxen , Ofloxacin , Pandemics , Pennsylvania , Pharmaceutical Preparations , Soil , Sulfamethoxazole , Trimethoprim , Waste Disposal, Fluid , Waste Water , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
15.
PLoS One ; 17(6): e0270378, 2022.
Article in English | MEDLINE | ID: covidwho-1910680

ABSTRACT

BACKGROUND: Intestinal parasitic infection (IPIs) is one of the major health problems in Sub -Saharan Africa where water, sanitation and hygiene practices are inadequate. Taking into account the national level implementation of intensive hand hygiene against COVID-19 pandemic and general protective effect this study assessed its effect on intestinal parasite. OBJECTIVE: This study aim to investigate the effect of compliance to hand hygiene practice on the prevalence of intestinal parasitic infection (IPIs) and intensity of Soil transmitted helminthes (STH) among patients attending tertiary care hospital in southern Ethiopia. METHODS: Observational study was conducted from June to September 2021. Data on socio demographic, hand hygiene practice and intestinal parasite (prevalence and intensity of helminthic infection) was collected from randomly selected and consented patients. Compliance to hand hygiene practice was assessed using pre-tested questionnaire. Fresh stool sample from each participant was examined by direct wet mount, concentration and Ziehl-Neelson (ZN) staining technique to detect intestinal parasite. Intensity of STH measurements was done through direct egg-count per gram using Kato Katz methods. Data analysis was done using SPSS version 25. Odds ratio with 95% confidence interval was used to measure association and p-value <0.05 was considered as statistically significant. RESULTS: The study population (N = 264) consisted of 139(52.65%) male and 125 (47.34%) female with the mean ages of 36 ±16.12(±SD). The proportion of good compliance to hand hygiene during COVID-19 to was 43.93% (95%CI: 37% to 47) and prevalence of intestinal parasite was 26.14% (95%CI:21.2% to 31.75) comprising 23.48% intestinal protozoa and 6.43% of soil transmitted helminthic infection. Gardia lamblia, Entamoeba histolytica/dispar, Ascaris lumbricoides were the common parasite in the study area with prevalence of 15.53%, 6.44%, and 1.52% respectively. Prevalence of intestinal parasite among participants with good compliance to hand hygiene group and poor compliance to hand hygiene were (14.65% vs. 35.13%)(AOR: 0.48,95%CI:0.13 to 0.68) (p = 0.002) implying that good compliance to hand hygiene can reduce the risk of IPIs by 52%. Moreover significantly lower odds of intestinal protozoa among good compliance to hand hygiene group than the control (OR:0.38; (95%CI: 0.20 to 0.71);P = 0.001. However, no significant difference in the odds of intensity of STH infection in good compliance hand hygiene and poor compliance group. The result of this study also confirmed the association between intestinal parasitic infections and younger /adolescent age, education status, habit of eating raw vegetable and figure nail status. CONCLUSION: Good hand hygiene compliance during COVID-19 significantly associated with reduction of intestinal parasitic infection. This finding highlights the secondary protective effect of improved hand hygiene against IPIs and suggest it can used in augmenting the existing parasitic control strategies in the study setting.


Subject(s)
COVID-19 , Hand Hygiene , Helminthiasis , Helminths , Intestinal Diseases, Parasitic , Parasites , Trematode Infections , Adolescent , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Ethiopia/epidemiology , Feces/parasitology , Female , Helminthiasis/epidemiology , Hospitals, General , Humans , Intestinal Diseases, Parasitic/complications , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/prevention & control , Male , Pandemics , Prevalence , Risk Factors , Soil/parasitology , Trematode Infections/epidemiology
16.
Mycoses ; 65(11): 1024-1029, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1896015

ABSTRACT

BACKGROUND: Several hypotheses have been proposed for explaining the outbreak of coronavirus disease 2019 (COVID-19)-associated mucormycosis in India, including the burning of cattle dung cakes, though no study has yet been conducted to support this claim. METHODS: We conducted an aero-mycological study to evaluate whether Mucorales in the air increased during or after burning cattle dung cakes. We further compared the growth of Mucorales in the indoor air samples from houses with and without cattle. We also cultured fresh and dried cattle dung and soil samples for Mucorales. RESULTS: We noted no significant difference in the proportion of air samples growing Mucorales during (4/22 [18.2%]) and after (3/2 [13.6%]) cattle dung burning than that collected immediately before (4/22 [18.2%]). Mucorales were isolated in 15.4% of the indoor air samples obtained from different houses (both rural and urban); the proportion of samples growing Mucorales was not significantly different in households with and without cattle. We also observed growth of Mucorales in 6 of the 8 [75%] fresh and 3 of the 6 [50%] dried dung samples. The most common Mucorales isolated from soil and dung samples was Lichtheimia corymbifera, while Rhizopus arrhizus was the most common species isolated from indoor air samples. CONCLUSIONS: We found no significant increase in the proportion of air samples growing Mucorales during or after burning cattle dung cake than that before. It seems unlikely that cattle dung burning contributes to the occurrence of mucormycosis.


Subject(s)
COVID-19 , Mucormycosis , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cattle , India/epidemiology , Mucormycosis/epidemiology , Soil
17.
Int J Environ Res Public Health ; 19(11)2022 05 31.
Article in English | MEDLINE | ID: covidwho-1892870

ABSTRACT

Fertilizers are made from manure, but they are also produced through chemical processes. Fertilizer is an ammonia emission source; it releases ammonia when used. Ammonia is also emitted during the production process. Although many studies related to fertilizer application have been conducted, there are few research cases related to the production process and related emissions are not calculated. In this study, the ammonia emissions from NPK (nitrogen phosphorus Potassium oxide) fertilizer production facilities were checked through actual measurement and related characteristics were analyzed. In addition, emission factors were developed, and the necessity of developing emission factors was also confirmed. As a result of the development of the emission factor, it was found to be 0.001 kgNH3/ton, which is like the range of emission factors in related fields. The NPK ammonia emission factor of this study was found to be higher than the minimum emission factor currently applied in South Korea, and it was judged to be a level that can be used as an emission factor.


Subject(s)
Ammonia , Fertilizers , Agriculture , Ammonia/analysis , Manure , Nitric Oxide , Nitrogen , Nitrous Oxide/analysis , Soil
18.
DNA Cell Biol ; 41(1): 58-63, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1890820

ABSTRACT

The burning of fossil fuels to meet a growing demand for energy has created a climate crisis that threatens Earth's fragile ecosystems. While most undergraduate students are familiar with solar and wind energy as sustainable alternatives to fossil fuels, many are not aware of a climate solution right beneath their feet-soil-dwelling microbes! Microbial fuel cells (MFCs) harness energy from the metabolic activity of microbes in the soil to generate electricity. Recently, the coronavirus disease 2019 (COVID-19) pandemic transformed the traditional microbiology teaching laboratory into take-home laboratory kits and online modes of delivery, which could accommodate distance learning. This laboratory exercise combined both virtual laboratory simulations and a commercially available MFC kit to challenge undergraduate students to apply fundamental principles in microbiology to real-world climate solutions.


Subject(s)
Climate Change , Soil
19.
J Hazard Mater ; 436: 129255, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1867367

ABSTRACT

Personal protective equipment, used extensively during the COVID-19 pandemic, heavily burdened the environment due to improper waste management. Owing to their fibrous structure, layered non-woven polypropylene (PP) disposable masks release secondary fragments at a much higher rate than other plastic waste types, thus, posing a barely understood new form of ecological hazard. Here we show that PP mask fragments of different sizes induce morphogenic responses in plants during their early development. Using in vitro systems and soil-filled rhizotrons, we found that several PP mask treatments modified the root growth of Brassica napus (L.) regardless of the experimental system. The environment around the root and mask fragments seemed to influence the effect of PP fabric fragment contamination on early root growth. In soil, primary root length was clearly inhibited by larger PP mask fragments at 1 % concentration, while the two smallest sizes of applied mask fragments caused distinct, concentration-dependent changes in the lateral root numbers. Our results indicate that PP can act as a stressor: contamination by PP surgical masks affects plant growth and hence, warrants attention. Further investigations regarding the effects of plastic pollution on plant-soil interactions involving various soil types are urgently needed.


Subject(s)
COVID-19 , Masks , Humans , Pandemics , Plastics , Soil/chemistry
20.
Int Health ; 14(1): 111-112, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1795249

ABSTRACT

Attention is now beginning to focus on implementation of the new WHO NTD Roadmap (2021-2030), which presents single disease alliances and coalitions with an opportunity to consider novel ways to integrate and adapt control and elimination programmes to meet the new goals. This discussion piece links the parasitic worm diseases, caused by soil-transmitted helminths and schistosomes, highlighting that neglected tropical disease-control programmes could potentially benefit from greater cohesion and innovation, especially when increasing efforts to achieve elimination goals.


Subject(s)
Helminthiasis , Helminths , Schistosomiasis , Tropical Medicine , Animals , Helminthiasis/prevention & control , Humans , Neglected Diseases/prevention & control , Schistosomiasis/prevention & control , Soil/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL