Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Am J Trop Med Hyg ; 106(2): 562-565, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1614119

ABSTRACT

The dried-tube specimen (DTS) procedure was used to develop the COVID-19 serology control panel (CSCP). The DTS offers the benefit of shipping materials without a cold chain, allowing for greater access without deterioration of material integrity. Samples in the panel were sourced from COVID-19 convalescent persons from March to May 2020. The immunoglobulin subtypes (total Ig, IgM, and IgG) and their respective reactivity to severe acute respiratory syndrome coronavirus 2 nucleocapsid, spike, and receptor-binding domain antigens of the samples were delineated and compared with the WHO International Standard to elucidate the exact binding antibody units of each CSCP sample and ensure the CSCP provides adequate reactivity for different types of serological test platforms. We distribute the CSCP as a kit with five coded tubes to laboratories around the world to be used to compare test kits for external quality assurance, for harmonizing laboratory testing, and for use as training materials for laboratory workers.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Specimen Handling/methods , Antibodies, Viral/blood , COVID-19 Serological Testing/standards , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Specimen Handling/standards , Spike Glycoprotein, Coronavirus/immunology , World Health Organization
2.
Microbiol Spectr ; 9(3): e0016421, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1599285

ABSTRACT

Respiratory tract infections (RTIs) are ubiquitous among children in the community. A prospective observational study was performed to evaluate the diagnostic performance and quality of at-home parent-collected (PC) nasal and saliva swab samples, compared to nurse-collected (NC) swab samples, from children with RTI symptoms. Children with RTI symptoms were swabbed at home on the same day by a parent and a nurse. We compared the performance of PC swab samples as the test with NC swab samples as the reference for the detection of respiratory pathogen gene targets by reverse transcriptase PCR, with quality assessment using a human gene. PC and NC paired nasal and saliva swab samples were collected from 91 and 92 children, respectively. Performance and interrater agreement (Cohen's κ) of PC versus NC nasal swab samples for viruses combined showed sensitivity of 91.6% (95% confidence interval [CI], 85.47 to 95.73%) and κ of 0.84 (95% CI, 0.79 to 0.88), respectively; the respective values for bacteria combined were 91.4% (95% CI, 86.85 to 94.87%) and κ of 0.85 (95% CI, 0.80 to 0.89). In saliva samples, viral and bacterial sensitivities were lower at 69.0% (95% CI, 57.47 to 79.76%) and 78.1% (95% CI, 71.60 to 83.76%), as were κ values at 0.64 (95% CI, 0.53 to 0.72) and 0.70 (95% CI, 0.65 to 0.76), respectively. Quality assessment for human biological material (18S rRNA) indicated perfect interrater agreement. At-home PC nasal swab samples performed comparably to NC swab samples, whereas PC saliva swab samples lacked sensitivity for the detection of respiratory microbes. IMPORTANCE RTIs are ubiquitous among children. Diagnosis involves a swab sample being taken by a health professional, which places a considerable burden on community health care systems, given the number of cases involved. The coronavirus disease 2019 (COVID-19) pandemic has seen an increase in the at-home self-collection of upper respiratory tract swab samples without the involvement of health professionals. It is advised that parents conduct or supervise swabbing of children. Surprisingly, few studies have addressed the quality of PC swab samples for subsequent identification of respiratory pathogens. We compared NC and PC nasal and saliva swab samples taken from the same child with RTI symptoms, for detection of respiratory pathogens. The PC nasal swab samples performed comparably to NC samples, whereas saliva swab samples lacked sensitivity for the detection of respiratory microbes. Collection of swab samples by parents would greatly reduce the burden on community nurses without reducing the effectiveness of diagnoses.


Subject(s)
Respiratory Tract Infections/diagnosis , Specimen Handling/methods , Adult , Bacteria/genetics , Bacteria/isolation & purification , Child, Preschool , Female , Health Personnel , Humans , Infant , Male , Middle Aged , Nose/microbiology , Nose/virology , Parents , Prospective Studies , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Saliva , Specimen Handling/standards , Viruses/genetics , Viruses/isolation & purification , Young Adult
3.
J Med Virol ; 93(12): 6575-6581, 2021 12.
Article in English | MEDLINE | ID: covidwho-1530180

ABSTRACT

Reliable and rapid detection of severe acute respiratory syndrome coronavirus 2 in laboratory setting is critical to control the pandemic. We aimed to an evaluated polymerase chain reaction (PCR) efficiency of nasopharyngeal swabs stored in viral transport medium (VTM) in different temperatures. Ninety swabs taken into VTM were analyzed at the first hour, then divided into two groups with similar numbers of positive and negative samples. Positive samples of each group were also subgrouped according to Fam CT values as low CT (<25), medium CT (25-32), and high CT (32-38) groups. One group was stored at 4°C, while the other was stored at room temperature, PCR analyses were repeated every 24 h for 5 days and on Day 12. There was a total of 30 positive samples (12 low CT, 11 medium CT, and 7 high CT). The CT values of both groups remained unchanged in first 3 days while the CT values of the room temperature group increased after the third day. All of the positive samples remained positive in both groups for the first 5 days. On the 12th day, the total number of positives decreased to 8 in the room temperature group and 11 in the 4°C groups. All the low CT samples remained positive in both groups. In conclusion, it is safe to store positive samples in room temperature for up to 5 days. Only samples with high viral loads remain positive for 12 days, regardless of whether stored at room temperature or 4°C. Negative samples don't turn to invalid if stored in VTM.


Subject(s)
COVID-19 Testing/methods , Real-Time Polymerase Chain Reaction/methods , Specimen Handling/methods , COVID-19/diagnosis , Humans , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2 , Specimen Handling/standards , Time Factors
5.
Nat Commun ; 12(1): 5753, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1447302

ABSTRACT

Patients with COVID-19 shed SARS-CoV-2 RNA in stool, sometimes well after their respiratory infection has cleared. This may be significant for patient health, epidemiology, and diagnosis. However, methods to preserve stool, and to extract and quantify viral RNA are not standardized. We test the performance of three preservative approaches at yielding detectable SARS-CoV-2 RNA: the OMNIgene-GUT kit, Zymo DNA/RNA shield kit, and the most commonly applied, storage without preservative. We test these in combination with three extraction kits: QIAamp Viral RNA Mini Kit, Zymo Quick-RNA Viral Kit, and MagMAX Viral/Pathogen Kit. We also test the utility of ddPCR and RT-qPCR for the reliable quantification of SARS-CoV-2 RNA from stool. We identify that the Zymo DNA/RNA preservative and the QiaAMP extraction kit yield more detectable RNA than the others, using both ddPCR and RT-qPCR. Taken together, we recommend a comprehensive methodology for preservation, extraction and detection of RNA from SARS-CoV-2 and other coronaviruses in stool.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , Feces/virology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Humans , Phosphoproteins/genetics , Preservation, Biological/standards , RNA, Viral/analysis , RNA, Viral/genetics , Reagent Kits, Diagnostic , Reference Standards , SARS-CoV-2/genetics , Specimen Handling/standards , Viral Load/standards
6.
J Med Microbiol ; 70(9)2021 Sep.
Article in English | MEDLINE | ID: covidwho-1393561

ABSTRACT

Introduction. Non-invasive sample collection and viral sterilizing buffers have independently enabled workflows for more widespread COVID-19 testing by reverse-transcriptase polymerase chain reaction (RT-PCR).Gap statement. The combined use of sterilizing buffers across non-invasive sample types to optimize sensitive, accessible, and biosafe sampling methods has not been directly and systematically compared.Aim. We aimed to evaluate diagnostic yield across different non-invasive samples with standard viral transport media (VTM) versus a sterilizing buffer eNAT- (Copan diagnostics Murrieta, CA) in a point-of-care diagnostic assay system.Methods. We prospectively collected 84 sets of nasal swabs, oral swabs, and saliva, from 52 COVID-19 RT-PCR-confirmed patients, and nasopharyngeal (NP) swabs from 37 patients. Nasal swabs, oral swabs, and saliva were placed in either VTM or eNAT, prior to testing with the Xpert Xpress SARS-CoV-2 (Xpert). The sensitivity of each sampling strategy was compared using a composite positive standard.Results. Swab specimens collected in eNAT showed an overall superior sensitivity compared to swabs in VTM (70 % vs 57 %, P=0.0022). Direct saliva 90.5 %, (95 % CI: 82 %, 95 %), followed by NP swabs in VTM and saliva in eNAT, was significantly more sensitive than nasal swabs in VTM (50 %, P<0.001) or eNAT (67.8 %, P=0.0012) and oral swabs in VTM (50 %, P<0.0001) or eNAT (58 %, P<0.0001). Saliva and use of eNAT buffer each increased detection of SARS-CoV-2 with the Xpert; however, no single sample matrix identified all positive cases.Conclusion. Saliva and eNAT sterilizing buffer can enhance safe and sensitive detection of COVID-19 using point-of-care GeneXpert instruments.


Subject(s)
COVID-19 Nucleic Acid Testing , Specimen Handling/methods , Adult , Aged , COVID-19/diagnosis , Containment of Biohazards , Culture Media , Female , Humans , Male , Middle Aged , Mouth/virology , Nasopharynx/virology , Nose/virology , Point-of-Care Testing , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sensitivity and Specificity , Specimen Handling/standards
8.
Arch Virol ; 166(10): 2825-2828, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1384462

ABSTRACT

Extraction-based real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is currently the "gold standard" in SARS-CoV-2 diagnostics. However, some extraction-free RT-qPCR techniques have recently been developed. In this study, we compared the sensitivity of traditional extraction-based, heated extraction-free, and unheated extraction-free RT-qPCR methods for SARS-CoV-2 detection in nasopharyngeal swabs from symptomatic individuals. The unheated extraction-free method showed perfect agreement with the standard extraction-based RT-qPCR. By contrast, the heat-treated technique was associated with an 8.2% false negativity rate. Unheated extraction-free RT-qPCR for the molecular diagnosis of SARS-CoV-2 is a valuable alternative to the traditional extraction-based methods and may accelerate turnaround times by about two hours.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/standards
9.
Clin Chim Acta ; 511: 177-180, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1385202

ABSTRACT

To clarify the effect of different respiratory sample types on SARS-CoV-2 detection, we collected throat swabs, nasal swabs and hock-a-loogie saliva or sputum, and compared their detection rates and viral loads. The detection rates of sputum (95.65%, 22/23) and hock-a-loogie saliva (88.09%, 37/42) were significantly higher than those in throat swabs (41.54%, 27/65) and nasal swabs (72.31%, 47/65) (P < 0.001). The Ct Values of sputum, hock-a-loogie saliva and nasal swabs were significantly higher than that in throat swabs, whereas no significant difference was observed between sputum and saliva samples. Hock-a-loogie saliva are reliable sample types that can be used to detect SARS-CoV-2, and worthy of clinical promotion.


Subject(s)
COVID-19/diagnosis , COVID-19/genetics , Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , Saliva/virology , Specimen Handling/standards , Adult , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Polymerase Chain Reaction/methods , Prospective Studies , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Sputum/virology , Viral Load/methods , Viral Load/standards
10.
J Med Virol ; 93(9): 5481-5486, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363685

ABSTRACT

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections continue, there is a substantial need for cost-effective and large-scale testing that utilizes specimens that can be readily collected from both symptomatic and asymptomatic individuals in various community settings. Although multiple diagnostic methods utilize nasopharyngeal specimens, saliva specimens represent an attractive alternative as they can rapidly and safely be collected from different populations. While saliva has been described as an acceptable clinical matrix for the detection of SARS-CoV-2, evaluations of analytic performance across platforms for this specimen type are limited. Here, we used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens. The platform demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of the platform and determined the limit of detection of the assay to be 1562.5 copies/ml. Furthermore, across the five individual target components of this assay, there was a range in analytic sensitivities for each target with the N2 target being the most sensitive. Overall, this system also demonstrated comparable performance when compared to the detection of SARS-CoV-2 RNA in saliva by the cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test (Roche). Together, we demonstrate that saliva represents an appropriate matrix for SARS-CoV-2 detection on the novel Agena system as well as on a conventional real-time RT-PCR assay. We conclude that the MassARRAY® system is a sensitive and reliable platform for SARS-CoV-2 detection in saliva, offering scalable throughput in a large variety of clinical laboratory settings.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Diagnostic Tests, Routine/standards , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/virology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards , Benchmarking , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Diagnostic Tests, Routine/instrumentation , Diagnostic Tests, Routine/methods , Humans , Limit of Detection , Nasopharynx/virology , Specimen Handling/standards , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
11.
J Med Virol ; 93(9): 5333-5338, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363672

ABSTRACT

The accurate laboratory detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial element in the fight against coronavirus disease 2019 (COVID-19). Reverse transcription-polymerase chain reaction testing on combined oral and nasopharyngeal swab (ONPS) suffers from several limitations, including the need for qualified personnel, the discomfort caused by invasive nasopharyngeal sample collection, and the possibility of swab and transport media shortage. Testing on saliva would represent an advancement. The aim of this study was to compare the concordance between saliva samples and ONPS for the detection of SARS-CoV-2 on various commercial and laboratory-developed tests (LDT). Individuals were recruited from eight institutions in Quebec, Canada, if they had SARS-CoV-2 RNA detected on a recently collected ONPS, and accepted to provide another ONPS, paired with saliva. Assays available in the different laboratories (Abbott RealTime SARS-CoV-2, Cobas® SARS-CoV-2, Simplexa™ COVID-19 Direct, Allplex™ 2019-nCoV, RIDA®GENE SARS-CoV-2, and an LDT preceded by three different extraction methods) were used to determine the concordance between saliva and ONPS results. Overall, 320 tests were run from a total of 125 saliva and ONPS sample pairs. All assays yielded similar sensitivity when saliva was compared to ONPS, with the exception of one LDT (67% vs. 93%). The mean difference in cycle threshold (∆C t ) was generally (but not significantly) in favor of the ONPS for all nucleic acid amplification tests. The maximum mean ∆​​​​​C t was 2.0, while individual ∆C t varied importantly from -17.5 to 12.4. Saliva seems to be associated with sensitivity similar to ONPS for the detection of SARS-CoV-2 by various assays.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Diagnostic Tests, Routine/standards , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Diagnostic Tests, Routine/instrumentation , Diagnostic Tests, Routine/methods , Humans , Mouth/virology , Nasopharynx/virology , Quebec/epidemiology , Saliva/virology , Sensitivity and Specificity , Specimen Handling/standards
12.
Biomark Med ; 15(12): 987-997, 2021 08.
Article in English | MEDLINE | ID: covidwho-1320567

ABSTRACT

Aim: We investigated the effect of pre-analytical sample handling variations on coronavirus disease 2019-relevant circulating cytokine levels IFN-γ, IL-10, IL-12p70, IL-17A, IL-6 and TNF-α. Materials & methods: We collected blood in different collection tubes (ethylenediaminetetraacetic acid, sodium citrate, lithium heparin, serum), and subjected ethylenediaminetetraacetic acid plasma to among others increasing delays in centrifugation or -80°C storage. Six subjects were included in each experimental condition. Cytokine levels were measured in these samples using the Simoa Cytokine 6-plex kit. Results: Different tube types resulted in different blood cytokine levels. IL-17A and IL-6 levels declined with 3 h centrifugation delay. IFN-γ levels declined with 24 h postcentrifugation storage delay. IL-17A levels declined with 2-week storage delay. Conclusion: It is recommended to centrifuge tubes quickly following collection, for accurate cytokine measurement.


Subject(s)
Biological Specimen Banks/standards , COVID-19/blood , Cytokines/blood , Quality Control , SARS-CoV-2/metabolism , Specimen Handling/standards , Adult , Female , Humans , Male , Middle Aged
13.
J Occup Environ Hyg ; 18(9): 461-475, 2021 09.
Article in English | MEDLINE | ID: covidwho-1291249

ABSTRACT

Environmental air sampling of the SARS-CoV-2 virus in occupational and community settings is pertinent to reduce and monitor the spread of the COVID pandemic. However, there is a general lack of standardized procedures for airborne virus sampling and limited knowledge of how sampling and storage stress impact the recovery of captured airborne viruses. Since filtration is one of the commonly used methods to capture airborne viruses, this study analyzed the effect of sampling and storage stress on SARS-CoV-2 surrogate virus (human coronavirus OC43, or HCoV-OC43) captured by filters. HCoV-OC43, a simulant of the SARS-CoV-2, was aerosolized and captured by PTFE-laminated filters. The impact of sampling stress was evaluated by comparing the RNA yields recovered when sampled at 3 L/min and 10 L/min and for 10 min and 60 min; in one set of experiments, additional stress was added by passing clean air through filters with the virus for 1, 5, and 15 hr. The impact of storage stress was designed to examine RNA recovery from filters at room temperature (25 °C) and refrigerated conditions (4 °C) for up to 1 week of storage. To our knowledge, this is the first report on using HCoV-OC43 aerosol in air sampling experiments, and the mode diameter of the virus aerosolized from the growth medium was 40-60 nm as determined by SMPS + CPC system (TSI Inc.) and MiniWRAS (Grimm Inc.) measurements. No significant difference was found in virus recovery between the two sampling flow rates and different sampling times (p > 0.05). However, storage at room temperature (25 °C) yielded ∼2x less RNA than immediate processing and storage at refrigerated conditions (4 °C). Therefore, it is recommended to store filter samples with viruses at 4 °C up to 1 week if the immediate analysis is not feasible. Although the laminated PTFE filter used in this work purposefully does not include a non-PTFE backing, the general recommendations for handling and storing filter samples with viral particles are likely to apply to other filter types.


Subject(s)
Air Filters/virology , COVID-19/epidemiology , Coronavirus OC43, Human/isolation & purification , Specimen Handling/methods , Specimen Handling/standards , Environmental Monitoring , Humans , Pandemics , SARS-CoV-2 , Temperature , Time Factors
14.
J Emerg Nurs ; 47(5): 798-806, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1284202

ABSTRACT

BACKGROUND: Nurses are the primary clinicians who collect specimens for respiratory tract infection testing. The specimen collection procedure is time and resource-consuming, but more importantly, it places nurses at risk for potential infection. The practice of allowing patients to self-collect their diagnostic specimens may provide an alternative testing model for the current COVID-19 outbreaks. The objective of this paper was to evaluate the accuracy and patient perception of self-collected specimens for respiratory tract infection diagnostics. METHODS: A concise clinical review of the recently published literature was conducted. RESULTS: A total of 11 articles were included the review synthesis. The concept of self-collected specimens has a high patient acceptance rate of 83-99%. Self-collected nasal-swab specimens demonstrated strong diagnostic fidelity for respiratory tract infections with a sensitivity between 80-100%, this is higher than the 76% sensitivity observed with self-collected throat specimens. In a comparative study evaluating a professionally collected to a self-collected specimen for COVID-19 testing, a high degree of agreement (k = 0.89) was observed between the two methods. CONCLUSION: As we continue to explore for testing models to combat the COVID-19 pandemic, self-collected specimens is a practical alternative to nurse specimen collection.


Subject(s)
COVID-19/diagnosis , Respiratory Tract Infections/diagnosis , Specimen Handling/standards , COVID-19/epidemiology , COVID-19 Testing , Emergency Service, Hospital , Humans , Pandemics , SARS-CoV-2 , Specimen Handling/methods
15.
Rev Bras Ginecol Obstet ; 43(5): 377-383, 2021 May.
Article in English | MEDLINE | ID: covidwho-1284748

ABSTRACT

OBJECTIVE: The coronavirus disease 2019 (COVID-19) is a pandemic viral disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The impact of the disease among the obstetric population remains unclear, and the study of the placenta can provide valuable information. Adequate sampling of the placental tissue can help characterize the pathways of viral infections. METHODS: A protocol of placental sampling is proposed, aiming at guaranteeing representativity of the placenta and describing the adequate conservation of samples and their integrity for future analysis. The protocol is presented in its complete and simplified versions, allowing its implementation in different complexity settings. RESULTS: Sampling with the minimum possible interval from childbirth is the key for adequate sampling and storage. This protocol has already been implemented during the Zika virus outbreak. CONCLUSION: A protocol for adequate sampling and storage of placental tissue is fundamental for adequate evaluation of viral infections on the placenta. During the COVID-19 pandemic, implementation of this protocol may help to elucidate critical aspects of the SARS-CoV-2 infection.


OBJETIVO: A doença do novo coronavírus (COVID-19) é uma doença viral pandêmica causada pelo coronavírus da síndrome respiratória aguda 2 (SARS-CoV-2). O impacto da doença entre a população obstétrica ainda é incerto, e o estudo da placenta pode fornecer informações valiosas. Assim, a coleta adequada do tecido placentário pode ajudar a caracterizar algumas propriedades das infecções virais. MéTODOS: Um protocolo de coleta placentária é proposto, objetivando a garantia de representatividade da placenta, descrevendo a maneira de conservação adequada das amostras, e visando garantir sua integridade para análises futuras. O protocolo é apresentado em suas versões completa e simplificada, permitindo sua implementação em diferentes configurações de infraestrutura. RESULTADOS: A amostragem com o intervalo mínimo possível do parto é essencial para coleta e armazenamento adequados. Esse protocolo já foi implementado durante a epidemia de vírus Zika. CONCLUSãO: Um protocolo para coleta e armazenamento adequados de tecido placentário é fundamental para a avaliação adequada de infecções virais na placenta. Durante a pandemia de COVID-19, a implementação deste protocolo pode ajudar a elucidar aspectos críticos da infecção por SARS-CoV-2.


Subject(s)
COVID-19/virology , Placenta/virology , Specimen Handling/methods , Specimen Handling/standards , Female , Humans , Pregnancy , Virology/methods , Virology/standards , Virus Diseases/virology
17.
J Cancer Res Ther ; 17(2): 551-555, 2021.
Article in English | MEDLINE | ID: covidwho-1268377

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID 19) is a zoonotic viral infection that originated in Wuhan, China, in December 2019. It was declared a pandemic by the World Health Organization shortly thereafter. This pandemic is going to have a lasting impact on the functioning of pathology laboratories due to the frequent handling of potentially infectious samples by the laboratory personnel. To deal with this unprecedented situation, various national and international guidelines have been put forward outlining the precautions to be taken during sample processing from a potentially infectious patient. PURPOSE: Most of these guidelines are centered around laboratories that are a part of designated COVID 19 hospitals. However, proper protocols need to be in place in all laboratories, irrespective of whether they are a part of COVID 19 hospital or not as this would greatly reduce the risk of exposure of laboratory/hospital personnel. As part of a laboratory associated with a rural cancer hospital which is not a dedicated COVID 19 hospital, we aim to present our institute's experience in handling pathology specimens during the COVID 19 era. CONCLUSION: We hope this will address the concerns of small to medium sized laboratories and help them build an effective strategy required for protecting the laboratory personnel from risk of exposure and also ensure smooth and optimum functioning of the laboratory services.


Subject(s)
COVID-19/diagnosis , Clinical Laboratory Services/organization & administration , Infection Control/organization & administration , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Tertiary Care Centers/organization & administration , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Cancer Care Facilities/organization & administration , Cancer Care Facilities/standards , Clinical Laboratory Services/standards , Decontamination/methods , Decontamination/standards , Developing Countries , Disinfection/methods , Disinfection/organization & administration , Disinfection/standards , Hospitals, Rural/organization & administration , Hospitals, Rural/standards , Humans , India/epidemiology , Infection Control/standards , Medical Laboratory Personnel/organization & administration , Medical Laboratory Personnel/standards , Pandemics/prevention & control , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Specimen Handling/standards , Tertiary Care Centers/standards , Workforce/organization & administration , Workforce/standards
18.
J Virol Methods ; 294: 114174, 2021 08.
Article in English | MEDLINE | ID: covidwho-1226316

ABSTRACT

There is growing evidence that measurement of SARS-CoV-2 viral copy number can inform clinical and public health management of SARS-CoV-2 carriers and COVID-19 patients. Here we show that quantification of SARS-CoV-2 is feasible in a clinical setting, using a duplex RT-qPCR assay which targets both the E gene (Charité assay) and a human RNA transcript, RNase P (CDC assay) as an internal sample sufficiency control. Samples in which RNase P is not amplified indicate that sample degradation has occurred, PCR inhibitors are present, RNA extraction has failed or swabbing technique was insufficient. This important internal control reveals that 2.4 % of nasopharyngeal swabs (15/618 samples) are inadequate for SARS-CoV-2 testing which, if not identified, could result in false negative results. We show that our assay is linear across at least 7 logs and is highly reproducible, enabling the conversion of Cq values to viral copy numbers using a standard curve. Furthermore, the SARS-CoV-2 copy number was independent of the RNase P copy number indicating that the per-swab viral copy number is not dependent on sampling- further allowing comparisons between samples. The ability to quantify SARS-CoV-2 viral copy number will provide an important opportunity for viral burden-guided public health and clinical decision making.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , RNA, Viral/genetics , SARS-CoV-2/genetics , Specimen Handling/standards , COVID-19/diagnosis , COVID-19/virology , Gene Dosage , Genes, Essential , Humans , Limit of Detection , RNA, Viral/isolation & purification , Reference Standards , Ribonuclease P/genetics , Specimen Handling/methods , Viral Load
19.
Lab Med ; 52(6): 619-625, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1214642

ABSTRACT

Laboratory information systems need to adapt to new demands created by the COVID-19 pandemic, which has set up new normals like containment measures and social distancing. Some of these have negatively impacted the pre- and postanalytical phases of laboratory testing. Here, we present an intriguing finding related to the generation of the accession number/specimen number on the investigation module of a hospital management information system and its impact on the dissemination of reports resulting in the wrong release of reports on a female patient amidst the background of COVID-19 containment measures. We analyze the situation that led to this false reporting and the importance of the proper customization of information software in laboratories along with a robust postanalytical framework of laboratory work culture to avert such untoward incidents. This introspection has made us realize that COVID-19 has been a scientific, medical, and social challenge. We need to redefine our priorities in the days to come because SARS-CoV-2 is here to stay.


Subject(s)
COVID-19 Testing/standards , COVID-19/diagnosis , Diagnostic Errors , SARS-CoV-2/pathogenicity , Specimen Handling/standards , Staining and Labeling/standards , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Clinical Laboratory Information Systems/organization & administration , Clinical Laboratory Services/organization & administration , Disease Notification/methods , Female , Humans , Patient Isolation/organization & administration , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL