Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Life Sci Alliance ; 5(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1515726

ABSTRACT

Understanding pathways that might impact coronavirus disease 2019 (COVID-19) manifestations and disease outcomes is necessary for better disease management and for therapeutic development. Here, we analyzed alterations in sphingolipid (SL) levels upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection induced elevation of SL levels in both cells and sera of infected mice. A significant increase in glycosphingolipid levels was induced early post SARS-CoV-2 infection, which was essential for viral replication. This elevation could be reversed by treatment with glucosylceramide synthase inhibitors. Levels of sphinganine, sphingosine, GA1, and GM3 were significantly increased in both cells and the murine model upon SARS-CoV-2 infection. The potential involvement of SLs in COVID-19 pathology is discussed.


Subject(s)
COVID-19/metabolism , Disease Models, Animal , Sphingolipids/metabolism , Virus Replication/physiology , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Chromatography, Liquid/methods , Dioxanes/pharmacology , Gangliosides/blood , Gangliosides/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Humans , Mass Spectrometry/methods , Mice, Transgenic , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingolipids/blood , Sphingosine/analogs & derivatives , Sphingosine/blood , Sphingosine/metabolism , Vero Cells , Virus Replication/drug effects
2.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438628

ABSTRACT

The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient's outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.


Subject(s)
COVID-19/blood , Sphingolipids/blood , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Female , Humans , Lipidomics , Male , Middle Aged , Prognosis , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sphingolipids/analysis , Sphingomyelins/analysis , Sphingomyelins/blood , Young Adult
3.
Sci Rep ; 11(1): 14232, 2021 07 09.
Article in English | MEDLINE | ID: covidwho-1303793

ABSTRACT

COVID-19 pandemic exerts a health care emergency around the world. The illness severity is heterogeneous. It is mostly unknown why some individuals who are positive for SARS-CoV-2 antibodies stay asymptomatic while others show moderate to severe disease symptoms. Reliable biomarkers for early detection of the disease are urgently needed to attenuate the virus's spread and help make early treatment decisions. Bioactive sphingolipids play a crucial role in the regulation of viral infections and pro-inflammatory responses involved in the severity of COVID-19. However, any roles of sphingolipids in COVID-19 development or detection remain unknown. In this study, lipidomics measurement of serum sphingolipids demonstrated that reduced sphingosine levels are highly associated with the development of symptomatic COVID-19 in the majority (99.24%) SARS-CoV-2-infected patients compared to asymptomatic counterparts. The majority of asymptomatic individuals (73%) exhibited increased acid ceramidase (AC) in their serum, measured by Western blotting, consistent with elevated sphingosine levels compared to SARS-CoV-2 antibody negative controls. AC protein was also reduced in almost all of the symptomatic patients' serum, linked to reduced sphingosine levels, measured in longitudinal acute or convalescent COVID-19 samples. Thus, reduced sphingosine levels provide a sensitive and selective serologic biomarker for the early identification of asymptomatic versus symptomatic COVID-19 patients.


Subject(s)
Acid Ceramidase/blood , COVID-19 , Carrier State , Lipid Metabolism , SARS-CoV-2/metabolism , Sphingolipids/blood , Sphingosine/blood , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Carrier State/blood , Carrier State/diagnosis , Female , Humans , Male , Middle Aged
4.
Pediatr Allergy Immunol ; 31(7): 755-766, 2020 10.
Article in English | MEDLINE | ID: covidwho-382014

ABSTRACT

BACKGROUND: Bronchiolitis is the leading cause of infant hospitalizations in the United States. Growing evidence supports the heterogeneity of bronchiolitis. However, little is known about the interrelationships between major respiratory viruses (and their species), host systemic metabolism, and disease pathobiology. METHODS: In an ongoing multicenter prospective cohort study, we profiled the serum metabolome in 113 infants (63 RSV-only, 21 RV-A, and 29 RV-C) hospitalized with bronchiolitis. We identified serum metabolites that are most discriminatory in the RSV-RV-A and RSV-RV-C comparisons using sparse partial least squares discriminant analysis. We then investigated the association between discriminatory metabolites with acute and chronic outcomes. RESULTS: In 113 infants with bronchiolitis, we measured 639 metabolites. Serum metabolomic profiles differed in both comparisons (Ppermutation  < 0.05). In the RSV-RV-A comparison, we identified 30 discriminatory metabolites, predominantly in lipid metabolism pathways (eg, sphingolipids and carnitines). In multivariable models, these metabolites were significantly associated with the risk of clinical outcomes (eg, tricosanoyl sphingomyelin, OR for recurrent wheezing at age of 3 years = 1.50; 95% CI: 1.05-2.15). In the RSV-RV-C comparison, the discriminatory metabolites were also primarily involved in lipid metabolism (eg, glycerophosphocholines [GPCs], 12,13-diHome). These metabolites were also significantly associated with the risk of outcomes (eg, 1-stearoyl-2-linoleoyl-GPC, OR for positive pressure ventilation use during hospitalization = 0.47; 95% CI: 0.28-0.78). CONCLUSION: Respiratory viruses and their species had distinct serum metabolomic signatures that are associated with differential risks of acute and chronic morbidities of bronchiolitis. Our findings advance research into the complex interrelations between viruses, host systemic response, and bronchiolitis pathobiology.


Subject(s)
Bronchiolitis/blood , Bronchiolitis/virology , Metabolome , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Bronchiolitis/pathology , Carnitine/blood , Female , Hospitalization , Humans , Infant , Lipid Metabolism , Male , Metabolomics , Prospective Studies , Respiratory Sounds/etiology , Respiratory Syncytial Virus Infections/blood , Rhinovirus , Risk Factors , Sphingolipids/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...