Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Sci Rep ; 11(1): 21633, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1503836


Although the serum lipidome is markedly affected by COVID-19, two unresolved issues remain: how the severity of the disease affects the level and the composition of serum lipids and whether serum lipidome analysis may identify specific lipids impairment linked to the patients' outcome. Sera from 49 COVID-19 patients were analyzed by untargeted lipidomics. Patients were clustered according to: inflammation (C-reactive protein), hypoxia (Horowitz Index), coagulation state (D-dimer), kidney function (creatinine) and age. COVID-19 patients exhibited remarkable and distinctive dyslipidemia for each prognostic factor associated with reduced defense against oxidative stress. When patients were clustered by outcome (7 days), a peculiar lipidome signature was detected with an overall increase of 29 lipid species, including-among others-four ceramide and three sulfatide species, univocally related to this analysis. Considering the lipids that were affected by all the prognostic factors, we found one sphingomyelin related to inflammation and viral infection of the respiratory tract and two sphingomyelins, that are independently related to patients' age, and they appear as candidate biomarkers to monitor disease progression and severity. Although preliminary and needing validation, this report pioneers the translation of lipidome signatures to link the effects of five critical clinical prognostic factors with the patients' outcomes.

COVID-19/metabolism , Lipids/blood , Serum/chemistry , Adult , Aged , Biomarkers/blood , COVID-19/blood , Dyslipidemias/metabolism , Female , Humans , Italy , Lipidomics/methods , Lipids/analysis , Male , Middle Aged , Oxidative Stress/physiology , Prognosis , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Sphingomyelins/blood
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438628


The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient's outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.

COVID-19/blood , Sphingolipids/blood , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Female , Humans , Lipidomics , Male , Middle Aged , Prognosis , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sphingolipids/analysis , Sphingomyelins/analysis , Sphingomyelins/blood , Young Adult
Cell Metab ; 32(2): 188-202.e5, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612608


The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented threat to global public health. Herein, we utilized a combination of targeted and untargeted tandem mass spectrometry to analyze the plasma lipidome and metabolome in mild, moderate, and severe COVID-19 patients and healthy controls. A panel of 10 plasma metabolites effectively distinguished COVID-19 patients from healthy controls (AUC = 0.975). Plasma lipidome of COVID-19 resembled that of monosialodihexosyl ganglioside (GM3)-enriched exosomes, with enhanced levels of sphingomyelins (SMs) and GM3s, and reduced diacylglycerols (DAGs). Systems evaluation of metabolic dysregulation in COVID-19 was performed using multiscale embedded differential correlation network analyses. Using exosomes isolated from the same cohort, we demonstrated that exosomes of COVID-19 patients with elevating disease severity were increasingly enriched in GM3s. Our work suggests that GM3-enriched exosomes may partake in pathological processes related to COVID-19 pathogenesis and presents the largest repository on the plasma lipidome and metabolome distinct to COVID-19.

Coronavirus Infections/blood , Coronavirus Infections/pathology , Exosomes/metabolism , G(M3) Ganglioside/blood , Gangliosides/blood , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Adult , Aged , Betacoronavirus , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , COVID-19 , Diglycerides/blood , Female , Humans , Male , Metabolome/physiology , Metabolomics/methods , Middle Aged , Pandemics , SARS-CoV-2 , Sphingomyelins/blood , Tandem Mass Spectrometry , Young Adult