Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Cells ; 10(5)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1223958


Sphingolipids are important structural membrane components and, together with cholesterol, are often organized in lipid rafts, where they act as signaling molecules in many cellular functions. They play crucial roles in regulating pathobiological processes, such as cancer, inflammation, and infectious diseases. The bioactive metabolites ceramide, sphingosine-1-phosphate, and sphingosine have been shown to be involved in the pathogenesis of several microbes. In contrast to ceramide, which often promotes bacterial and viral infections (for instance, by mediating adhesion and internalization), sphingosine, which is released from ceramide by the activity of ceramidases, kills many bacterial, viral, and fungal pathogens. In particular, sphingosine is an important natural component of the defense against bacterial pathogens in the respiratory tract. Pathologically reduced sphingosine levels in cystic fibrosis airway epithelial cells are normalized by inhalation of sphingosine, and coating plastic implants with sphingosine prevents bacterial infections. Pretreatment of cells with exogenous sphingosine also prevents the viral spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from interacting with host cell receptors and inhibits the propagation of herpes simplex virus type 1 (HSV-1) in macrophages. Recent examinations reveal that the bactericidal effect of sphingosine might be due to bacterial membrane permeabilization and the subsequent death of the bacteria.

Bacterial Infections/immunology , Mycoses/immunology , Signal Transduction/immunology , Sphingosine/metabolism , Virus Diseases/immunology , Animals , Bacterial Infections/drug therapy , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Cell Wall/drug effects , Ceramides/metabolism , Disease Models, Animal , Herpesvirus 1, Human/immunology , Humans , Lysophospholipids/metabolism , Membrane Microdomains/immunology , Membrane Microdomains/metabolism , Mycoses/drug therapy , Mycoses/metabolism , Mycoses/microbiology , SARS-CoV-2/immunology , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Sphingosine/therapeutic use , Virus Diseases/drug therapy , Virus Diseases/metabolism , Virus Diseases/virology
J Biol Chem ; 295(45): 15174-15182, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-759661


Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivo human epithelial cells with pseudoviral particles expressing SARS-CoV-2 spike (pp-VSV-SARS-CoV-2 spike) that served as a bona fide system mimicking SARS-CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS-CoV-2 spike. Pretreatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV-SARS-CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS-CoV-2, and prevents the interaction of the receptor-binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.

Angiotensin-Converting Enzyme 2/metabolism , Sphingosine/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , HEK293 Cells , Humans , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Protein Binding , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects