Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Front Immunol ; 13: 841759, 2022.
Article in English | MEDLINE | ID: covidwho-1952324

ABSTRACT

A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection were observed in patients with severe COVID-19. The cause of this predisposition to infection is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised that secondary hypocomplementaemia is rendering the antibody-dependent classical pathway activation inactive and compromises serum bactericidal activity (SBA). 217 patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial infections. Klebsiella species were the most common Gram-negative organism, found in 58 patients, while S. aureus was the dominant Gram-positive organism found in 22 patients. Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in convalescent survivors three months after discharge. Sera from patients with acute COVID-19 were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute COVID-19 leads to secondary hypocomplementaemia and predisposes to opportunistic infections.


Subject(s)
COVID-19 , Staphylococcal Infections , Complement System Proteins , Hereditary Complement Deficiency Diseases , Humans , Klebsiella pneumoniae , Staphylococcus aureus
2.
Ital J Pediatr ; 48(1): 67, 2022 May 07.
Article in English | MEDLINE | ID: covidwho-1951286

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is highly prevalent worldwide and can cause severe diseases. MRSA is associated with other antibiotic resistance. COVID-19 pandemic increased antimicrobial resistance in adult patients. Only a few data report the antimicrobial susceptibility of S. aureus in the Italian pediatric population, before and during the COVID-19 pandemic. METHODS: We included all the S. aureus positive samples with an available antibiogram isolated from pediatric patients (< 18 years old) in a tertiary care hospital in Milan, Italy, from January 2017 to December 2021. We collected data on demographics, antimicrobial susceptibility, and clinical history. We compared methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA strains. We calculated the frequency of isolation by year. The incidence of isolates during 2020 was compared with the average year isolation frequency using the univariate Poisson test. We compared the proportion of MRSA isolates during 2020 to the average proportion of other years with the Chi-squared test. RESULTS: Our dataset included a total of 255 S. aureus isolated from 226 patients, 120 (53%) males, and 106 (47%) females, with a median age of 3.4 years (IQR 0.8 - 10.5). The mean isolation frequency per year was 51. We observed a significant decrease of isolations during 2020 (p = 0.02), but after adjusting for the total number of hospitalization per year there was no evidence that the incidence changed. Seventy-six (30%) S. aureus were MRSA. Twenty (26%) MRSA vs 23 (13%) MSSA (p = 0.02) were hospital-acquired. MRSA strains showed higher resistance to cotrimoxazole, clindamycin, macrolides, levofloxacin, gentamicin, and tetracyclin than MSSA strains. None of MRSA were resistant to linezolid and vancomycin, one was resistant to daptomycin. The proportion of MRSA did not change during the COVID-19 pandemic. The overall clindamycin resistance was high (17%). Recent antibiotic therapy was related to MRSA infection. CONCLUSION: The proportion of MRSA did not change during the COVID-19 pandemic and remained high. Clindamycin should not be used as an empirical MRSA treatment due to its high resistance.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , Child , Child, Preschool , Clindamycin/pharmacology , Clindamycin/therapeutic use , Female , Hospitals, Pediatric , Humans , Infant , Male , Microbial Sensitivity Tests , Pandemics , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcus aureus , Tertiary Healthcare
3.
BMC Infect Dis ; 22(1): 631, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1938294

ABSTRACT

OBJECTIVES: Staphylococcus aureus bacteremia (SAB) is one of the most frequent bloodstream infections. High mortality of SAB can be significantly reduced by regular infectious disease (ID) consultations and appropriate clinical management. Because the pandemic of coronavirus disease 2019 (COVID-19) has had a negative impact on hospital ID service, it can be assumed that it has also led to decreased quality of care for SAB patients. METHODS: This study enrolled all (n = 68) patients with proven SAB who were hospitalized in Military University Hospital, Prague, in 2019 and 2020 and the quality of care indicators for SAB patients were compared. RESULTS: A total of 33 and 35 patients with SAB were hospitalized in our hospital in 2019 and 2020, respectively. The significant difference between the pandemic year 2020 and year 2019 was in ID consultations performed (74% vs. 100%; p = 0.002) and fulfilment of all quality of care indicators (66% vs. 93%; p = 0.012). Next, higher in-hospital mortality was observed in 2020 than in 2019 (6% vs. 23%; p = 0.085). There was no significant difference in the percentages of patients with performed echocardiographic examinations (66% vs. 83%; p = 0.156) and collected follow-up blood cultures (85% vs. 94%; p = 0.428). In addition, there was no difference between the two years in the adequate antibiotic therapy, sources, and bacterial origin of SAB. CONCLUSIONS: The quality of care of SAB patients significantly decreased during the COVID-19 pandemic in our institution.


Subject(s)
Bacteremia , COVID-19 , Staphylococcal Infections , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Humans , Pandemics , Retrospective Studies , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus , Treatment Outcome
4.
Sci Rep ; 12(1): 8118, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1931463

ABSTRACT

In the current COVID-19 pandemic, the next generation of innovative materials with enhanced anti-SARS-CoV-2 activity is urgently needed to prevent the spread of this virus within the community. Herein, we report the synthesis of chitosan/α-Ag2WO4 composites synthetized by femtosecond laser irradiation. The antimicrobial activity against Escherichia coli, Methicilin-susceptible Staphylococcus aureus (MSSA), and Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC). To assess the biocompatibility of chitosan/α-Ag2WO4 composites in a range involving MIC and MBC/MFC on keratinocytes cells (NOK-si), an alamarBlue™ assay and an MTT assay were carried out. The SARS-CoV-2 virucidal effects was analyzed in Vero E6 cells through viral titer quantified in cell culture supernatant by PFU/mL assay. Our results showed a very similar antimicrobial activity of chitosan/α-Ag2WO4 3.3 and 6.6, with the last one demonstrating a slightly better action against MSSA. The chitosan/α-Ag2WO4 9.9 showed a wide range of antimicrobial activity (0.49-31.25 µg/mL). The cytotoxicity outcomes by alamarBlue™ revealed that the concentrations of interest (MIC and MBC/MFC) were considered non-cytotoxic to all composites after 72 h of exposure. The Chitosan/α-Ag2WO4 (CS6.6/α-Ag2WO4) composite reduced the SARS-CoV-2 viral titer quantification up to 80% of the controls. Then, our results suggest that these composites are highly efficient materials to kill bacteria (Escherichia coli, Methicillin-susceptible Staphylococcus aureus, and the yeast strain Candida albicans), in addition to inactivating SARS-CoV-2 by contact, through ROS production.


Subject(s)
COVID-19 , Chitosan , Escherichia coli Infections , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Candida albicans , Chitosan/pharmacology , Escherichia coli , Humans , Lasers , Microbial Sensitivity Tests , Pandemics , SARS-CoV-2 , Staphylococcus aureus
5.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1928571

ABSTRACT

Multidrug antimicrobial resistance is a constantly growing health care issue associated with increased mortality and morbidity, and huge financial burden. Bacteria frequently form biofilm communities responsible for numerous persistent infections resistant to conventional antibiotics. Herein, novel nanoparticles (NPs) loaded with the natural bactericide farnesol (FSL NPs) are generated using high-intensity ultrasound. The nanoformulation of farnesol improved its antibacterial properties and demonstrated complete eradication of Staphylococcus aureus within less than 3 h, without inducing resistance development, and was able to 100% inhibit the establishment of a drug-resistant S. aureus biofilm. These antibiotic-free nano-antimicrobials also reduced the mature biofilm at a very low concentration of the active agent. In addition to the outstanding antibacterial properties, the engineered nano-entities demonstrated strong antiviral properties and inhibited the spike proteins of SARS-CoV-2 by up to 83%. The novel FSL NPs did not cause skin tissue irritation and did not induce the secretion of anti-inflammatory cytokines in a 3D skin tissue model. These results support the potential of these bio-based nano-actives to replace the existing antibiotics and they may be used for the development of topical pharmaceutic products for controlling microbial skin infections, without inducing resistance development.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Biofilms , Drug Resistance, Multiple , Farnesol/pharmacology , Humans , Microbial Sensitivity Tests , SARS-CoV-2 , Staphylococcal Infections/drug therapy , Staphylococcus aureus
7.
PLoS One ; 17(2): e0260580, 2022.
Article in English | MEDLINE | ID: covidwho-1910478

ABSTRACT

Healthcare-associated infections (HAIs) remain a serious public health problem. In previous work, two models of an intensive care unit (ICU) showed that differing population structures had markedly different rates of Staphylococcus aureus (MRSA) transmission. One explanation for this difference is the models having differing long-term equilbrium dynamics, resulting from different basic reproductive numbers, R0. We find in this system however that this is not the case, and that both models had the same value for R0. Instead, short-term, transient dynamics, characterizing a series of small, self-limiting outbreaks caused by pathogen reintroduction were responsible for the differences. These results show the importance of these short-term factors for disease systems where reintroduction events are frequent, even if they are below the epidemic threshold. Further, we examine how subtle changes in how a hospital is organized-or how a model assumes a hospital is organized-in terms of the admission of new patients may impact transmission rates. This has implications for both novel pathogens introduced into ICUs, such as Ebola, MERS or COVID-19, as well as existing healthcare-associated infections such as carbapenem-resistant Enterobacteriaceae.


Subject(s)
Cross Infection/transmission , Disease Outbreaks , Intensive Care Units , Methicillin-Resistant Staphylococcus aureus , Models, Statistical , Patient Admission , Staphylococcal Infections/epidemiology , Staphylococcal Infections/transmission , Humans , Nurses , Physicians , Staphylococcal Infections/microbiology , Stochastic Processes
8.
J Antibiot (Tokyo) ; 75(6): 321-332, 2022 06.
Article in English | MEDLINE | ID: covidwho-1878523

ABSTRACT

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.


Subject(s)
COVID-19 , Staphylococcal Infections , Aminoacyltransferases , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biofilms , Cysteine Endopeptidases , Humans , Microbial Sensitivity Tests , RNA, Viral/pharmacology , SARS-CoV-2 , Staphylococcus aureus
9.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1847340

ABSTRACT

In this study, humidified air dielectric barrier discharge (DBD) plasma was used to inactivate Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and bacteriophages in biofilms containing DNA, NaCl, carbohydrates, and proteins. The humidified DBD plasma was very effective in the inactivation of microbes in the (≤1.0 µm) biofilms. The number of surviving E. coli, S. aureus, and bacteriophages in the biofilms was strongly dependent on the constituent and thickness of the biofilms and was greatly reduced when the plasma treatment time increased from 5 s to 150 s. Our analysis shows that the UV irradiation was not responsible for the inactivation of microbes in biofilms. The short-lived RONS generated in the humidified air DBD plasma were not directly involved in the inactivation process; however, they recombined or reacted with other species to generate the long-lived RONS. Long-lived RONS diffused into the biofilms to generate very active species, such as ONOOH and OH. This study indicates that the geminated NO2 and OH pair formed due to the homolysis of ONOOH can cause the synergistic oxidation of various organic molecules in the aqueous solution. Proteins in the biofilm were highly resistant to the inactivation of microbes in biofilms, which is presumably due to the existence of the unstable functional groups in the proteins. The unsaturated fatty acids, cysteine-rich proteins, and sulfur-methyl thioether groups in the proteins were easily oxidized by the geminated NO2 and OH pair.


Subject(s)
Bacteriophages , Escherichia coli Infections , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Biofilms , Escherichia coli/physiology , Humans , Nitrogen Dioxide , Staphylococcus aureus/physiology
10.
mBio ; 13(3): e0031122, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807324

ABSTRACT

Population genomic analysis is a powerful tool to understand the evolutionary history of pathogens and the factors contributing to the success or failure of lineages. These studies have significant implications for human health, as evident from our ongoing tracking of SARS-CoV-2. In their article, Gill et al. (J. L. Gill, J. Hedge, D. J. Wilson, and R. C. MacLean, mBio 12:e02168-21, 2021, https://doi.org/10.1128/mBio.02168-21) demonstrate the utility of pathogen genomic data by comprehensively elucidating the origin of methicillin-resistant Staphylococcus aureus ST239. To accomplish this, they leveraged newly developed tools for querying large genomic data sets. Overall, these analyses rely on the availability of representative genomic data along with their associated metadata-information about where and when samples were collected, clinical and epidemiological characteristics, and phenotypic properties. However, in many instances, these data are missing. Here, I borrow the term "meaningful use" from the Health IT field to describe the need to maximize the utility of genomic data and make suggestions for how to address the current limitations.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Biological Evolution , Genomics , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , SARS-CoV-2/genetics , Staphylococcal Infections/epidemiology
11.
Zoonoses Public Health ; 69(5): 550-559, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1788902

ABSTRACT

It has been suggested that pets play a critical role in the maintenance of methicillin-resistant (MR) and multidrug-resistant (MDR) Staphylococcus spp. in the household. We examined risk factors for carriage of antimicrobial-resistant coagulase-positive staphylococci, with particular attention to Staphylococcus aureus and Staphylococcus pseudintermedius isolated from pets living in households of people diagnosed with methicillin-resistant S. aureus (MRSA) skin or soft-tissue infection. We analyzed data collected cross-sectionally from a study conducted in 2012 that evaluated the transmission of MRSA and other staphylococci from humans, their pets and the environment (Pets and Environmental Transmission of Staphylococci [PETS] study). We used unadjusted and adjusted stratified logistic regression analyses with household-clustered standard errors to evaluate the association between demographic, healthcare-related, contact-related and environmental risk factors and MDR Staphylococcus spp. isolated from dogs and cats. Staphylococcal isolates obtained from dogs (n = 63) and cats (n = 47) were included in these analyses. The use of oral or injectable antimicrobials by the pets during the prior year was the main risk factor of interest. Based on our results, 50% (12/24) of S. aureus, 3.3% (1/30) of S. pseudintermedius and 25% (14/56) of other coagulase-positive staphylococci (CPS) were determined to be MDR. S. aureus isolates were more likely to be MDR compared with S. pseudintermedius. We did not find a significant statistical association between the use of oral or injectable antimicrobials in the prior year and the presence of MDR bacteria. The results suggest that drivers of antimicrobial resistance in household staphylococci may vary by bacterial species, which could have implications for one health intervention strategies for staphylococci and inform the investigation of other reverse zoonoses, such as COVID-19.


Subject(s)
Anti-Infective Agents , COVID-19 , Cat Diseases , Dog Diseases , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , COVID-19/veterinary , Cat Diseases/microbiology , Cats , Coagulase , Dog Diseases/epidemiology , Dog Diseases/microbiology , Dogs , Drug Resistance, Bacterial , Humans , Pets/microbiology , Risk Factors , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus , Staphylococcus aureus
12.
Crit Care Med ; 50(5): 825-836, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1788543

ABSTRACT

OBJECTIVES: Ventilator-associated lower respiratory tract infections (VA-LRTIs) are associated with prolonged length of stay and increased mortality. We aimed to investigate the occurrence of bacterial VA-LRTI among mechanically ventilated COVID-19 patients and compare these findings to non-COVID-19 cohorts throughout the first and second wave of the pandemic. DESIGN: Retrospective cohort study. SETTING: Karolinska University Hospital, Stockholm, Sweden. PATIENTS: All patients greater than or equal to 18 years treated with mechanical ventilation between January 1, 2011, and December 31, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The cohort consisted of 20,223 ICU episodes (479 COVID-19), with a VA-LRTI incidence proportion of 30% (129/426) in COVID-19 and 18% (1,081/5,907) in non-COVID-19 among patients ventilated greater than or equal to 48 hours. The median length of ventilator treatment for COVID-19 patients was 10 days (interquartile range, 5-18 d), which was significantly longer than for all other investigated specific diagnoses. The VA-LRTI incidence rate per 1,000 ventilator days at risk was 31 (95% CI, 26-37) for COVID-19 and 34 (95% CI, 32-36) for non-COVID-19. With COVID-19 as reference, adjusted subdistribution hazard ratios for VA-LRTI was 0.29-0.50 (95% CI, < 1) for influenza, bacterial pneumonia, acute respiratory distress syndrome, and severe sepsis, but 1.38 (95% CI, 1.15-1.65) for specific noninfectious diagnoses. Compared with COVID-19 in the first wave of the pandemic, COVID-19 in the second wave had adjusted subdistribution hazard ratio of 1.85 (95% CI, 1.14-2.99). In early VA-LRTI Staphylococcus aureus was more common and Streptococcus pneumoniae, Haemophilus influenzae, and Escherichia coli less common in COVID-19 patients, while Serratia species was more often identified in late VA-LRTI. CONCLUSIONS: COVID-19 is associated with exceptionally long durations of mechanical ventilation treatment and high VA-LRTI occurrence proportions. The incidence rate of VA-LRTI was compared with the pooled non-COVID-19 cohort, however, not increased in COVID-19. Significant differences in the incidence of VA-LRTI occurred between the first and second wave of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Staphylococcal Infections , COVID-19/epidemiology , COVID-19/therapy , Humans , Pandemics , Pneumonia, Ventilator-Associated/epidemiology , Respiratory System , Respiratory Tract Infections/epidemiology , Retrospective Studies , Staphylococcal Infections/epidemiology , Ventilators, Mechanical
13.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: covidwho-1785835

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and responsible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant (MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach, 4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found to be more promising vaccine candidates. We applied a molecular docking approach of selected 8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug molecule with favorable interactions with the target active site residues of 5 drug target proteins viz., biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment of multidrug-resistant staphylococcal infection.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Vaccines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Genomics , Humans , Ligases , Methicillin-Resistant Staphylococcus aureus/genetics , Molecular Docking Simulation , Staphylococcal Infections/prevention & control , Staphylococcus aureus , Vaccinology
15.
Sci Rep ; 12(1): 4373, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1758367

ABSTRACT

Many infectious diseases, including COVID-19, are transmitted by airborne pathogens. There is a need for effective environmental control measures which, ideally, are not reliant on human behaviour. One potential solution is Krypton Chloride (KrCl) excimer lamps (often referred to as Far-UVC), which can efficiently inactivate pathogens, such as coronaviruses and influenza, in air. Research demonstrates that when KrCl lamps are filtered to remove longer-wavelength ultraviolet emissions they do not induce acute reactions in the skin or eyes, nor delayed effects such as skin cancer. While there is laboratory evidence for Far-UVC efficacy, there is limited evidence in full-sized rooms. For the first time, we show that Far-UVC deployed in a room-sized chamber effectively inactivates aerosolised Staphylococcus aureus. At a room ventilation rate of 3 air-changes-per-hour (ACH), with 5 filtered-sources the steady-state pathogen load was reduced by 98.4% providing an additional 184 equivalent air changes (eACH). This reduction was achieved using Far-UVC irradiances consistent with current American Conference of Governmental Industrial Hygienists threshold limit values for skin for a continuous 8-h exposure. Our data indicate that Far-UVC is likely to be more effective against common airborne viruses, including SARS-CoV-2, than bacteria and should thus be an effective and "hands-off" technology to reduce airborne disease transmission. The findings provide room-scale data to support the design and development of effective Far-UVC systems.


Subject(s)
COVID-19 , Staphylococcal Infections , Disinfection , Humans , SARS-CoV-2 , Ultraviolet Rays
16.
J Hosp Infect ; 123: 52-60, 2022 May.
Article in English | MEDLINE | ID: covidwho-1757533

ABSTRACT

BACKGROUND: Meticillin-resistant Staphylococcus aureus (MRSA) infections are rampant in hospitals and residential care homes for the elderly (RCHEs). AIM: To analyse the prevalence of MRSA colonization among residents and staff, and degree of environmental contamination and air dispersal of MRSA in RCHEs. METHODS: Epidemiological and genetic analysis by whole-genome sequencing (WGS) in 12 RCHEs in Hong Kong. FINDINGS: During the COVID-19 pandemic (from September to October 2021), 48.7% (380/781) of RCHE residents were found to harbour MRSA at any body site, and 8.5% (8/213) of staff were nasal MRSA carriers. Among 239 environmental samples, MRSA was found in 39.0% (16/41) of randomly selected resident rooms and 31.3% (62/198) of common areas. The common areas accessible by residents had significantly higher MRSA contamination rates than those that were not accessible by residents (37.2%, 46/121 vs. 22.1%, 17/177, P=0.028). Of 124 air samples, nine (7.3%) were MRSA-positive from four RCHEs. Air dispersal of MRSA was significantly associated with operating indoor fans in RCHEs (100%, 4/4 vs. 0%, 0/8, P=0.002). WGS of MRSA isolates collected from residents, staff and environmental and air samples showed that ST 1047 (CC1) lineage 1 constituted 43.1% (66/153) of all MRSA isolates. A distinctive predominant genetic lineage of MRSA in each RCHE was observed, suggestive of intra-RCHE transmission rather than clonal acquisition from the catchment hospital. CONCLUSION: MRSA control in RCHEs is no less important than in hospitals. Air dispersal of MRSA may be an important mechanism of dissemination in RCHEs with operating indoor fans.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Aged , COVID-19/epidemiology , Carrier State/epidemiology , Humans , Methicillin , Methicillin-Resistant Staphylococcus aureus/genetics , Pandemics , Staphylococcal Infections/epidemiology
17.
Pediatr Infect Dis J ; 41(4): e142-e145, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1752202

ABSTRACT

We reviewed all cases of Panton-Valentine leukocidin-producing Staphylococcus aureus (PVL-SA) bacteremia in Danish children between 2016 and 2021. We found 2 fatal cases with preceding viral prodrome due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the usual benign course of SARS-CoV-2 infection in children, awareness of possible superinfection with PVL-SA in a child with rapid deterioration is crucial to ensure adequate treatment, including antimicrobial drugs with antitoxin effect.


Subject(s)
Bacteremia , Bacterial Toxins/biosynthesis , COVID-19/complications , Exotoxins/biosynthesis , Leukocidins/biosynthesis , SARS-CoV-2 , Staphylococcal Infections/etiology , Staphylococcal Infections/mortality , Staphylococcus aureus/genetics , Adolescent , COVID-19/virology , Child , Child, Preschool , Coinfection , Comorbidity , Denmark/epidemiology , Female , Humans , Infant , Male , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Public Health Surveillance , Severity of Illness Index , Staphylococcal Infections/diagnosis , Staphylococcal Infections/therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
18.
BMJ Case Rep ; 15(3)2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1723594

ABSTRACT

A man fully mRNA-vaccinated against COVID-19 presented to our hospital with an acute febrile illness, respiratory symptoms and a positive test for SARS-CoV-2. He was later found early into hospitalisation to have two morbid bacterial co-infections: Legionella pneumophila serogroup 1 and methicillin-resistant Staphylococcus aureus (MRSA). Although this patient was initially admitted for COVID-19 management, his initial presentation was remarkable for lobar pneumonia, hyponatraemia and rhabdomyolysis more compatible with Legionnaire's disease than severe COVID-19. On discovery of MRSA pneumonia as a second bacterial infection, immunosuppressive COVID-19 therapies were discontinued and targeted antibiotics towards both bacterial co-infections were initiated. The patient's successful recovery highlighted the need to have high suspicion for bacterial co-infections in patients presenting with community-acquired pneumonia and a positive SARS-CoV-2 test, as patients with serious bacterial co-infections may have worse outcomes with use of immunosuppressive COVID-19 therapies.


Subject(s)
COVID-19 , Coinfection , Community-Acquired Infections , Legionella pneumophila , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Coinfection/diagnosis , Community-Acquired Infections/microbiology , Humans , Male , SARS-CoV-2 , Staphylococcal Infections/complications , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcus aureus
19.
APMIS ; 130(5): 270-275, 2022 May.
Article in English | MEDLINE | ID: covidwho-1714127

ABSTRACT

We report a case of Staphylococcus warneri native valve endocarditis in an immunocompetent healthy adult, without known risk factors for infective endocarditis, two months following COVID-19 infection, who recovered with conservative treatment. Additionally, we reviewed previous cases of native valve endocarditis caused by Staphylococcus warneri and summarized the main clinical implications.


Subject(s)
COVID-19 , Endocarditis, Bacterial , Endocarditis , Staphylococcal Infections , Adult , Aortic Valve , Endocarditis, Bacterial/diagnosis , Endocarditis, Bacterial/drug therapy , Humans , Staphylococcal Infections/drug therapy , Staphylococcus
20.
PLoS One ; 17(2): e0264301, 2022.
Article in English | MEDLINE | ID: covidwho-1703889

ABSTRACT

Remdesivir (RDV) reduces time to clinical improvement in hospitalized COVID -19 patients requiring supplemental oxygen. Dexamethasone improves survival in those requiring oxygen support. Data is lacking on the efficacy of combination therapy in patients on mechanical ventilation. We analyzed for comparative outcomes between Corticosteroid (CS) therapy with combined Corticosteroid and Remdesivir (CS-RDV) therapy. We conducted an observational cohort study of patients aged 18 to 90 with COVID-19 requiring ventilatory support using TriNetX (COVID-19 Research Network) between January 20, 2020, and February 9, 2021. We compared patients who received at least 48 hours of CS-RDV combination therapy to CS monotherapy. The primary outcome was 28-day all-cause mortality rates in propensity-matched (PSM) cohorts. Secondary outcomes were Length of Stay (LOS), Secondary Bacterial Infections (SBI), and MRSA (Methicillin-Resistant Staphylococcus aureus), and Pseudomonas infections. We used univariate and multivariate Cox proportional hazards models and stratified log-rank tests. Of 388 patients included, 91 (23.5%) received CS-RDV therapy, and 297 (76.5%) received CS monotherapy. After propensity score matching, with 74 patients in each cohort, all-cause mortality was 36.4% and 29.7% in the CS-RDV and CS therapy, respectively (P = 0.38). We used a Kaplan-Meier with a log-rank test on follow up period (P = 0.23), and a Hazards Ratio model (P = 0.26). SBI incidence was higher in the CS group (13.5% vs. 35.1%, P = 0.02) with a similar LOS (13.4 days vs. 13.4 days, P = 1.00) and similar incidence of MRSA/Pseudomonas infections (13.5% vs. 13.5%, P = 1.00) in both the groups. Therefore, CS-RDV therapy is non-inferior to CS therapy in reducing 28-day all-cause in-hospital mortality but associated with a significant decrease in the incidence of SBI in critically ill COVID-19 patients.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones/therapeutic use , Alanine/analogs & derivatives , COVID-19/drug therapy , Adenosine Monophosphate/therapeutic use , Aged , Alanine/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Cohort Studies , Drug Therapy, Combination , Female , Hospital Mortality , Humans , Incidence , Kaplan-Meier Estimate , Length of Stay , Male , Middle Aged , Proportional Hazards Models , Pseudomonas Infections/diagnosis , Pseudomonas Infections/epidemiology , Pseudomonas Infections/etiology , Respiration, Artificial , SARS-CoV-2/isolation & purification , Staphylococcal Infections/diagnosis , Staphylococcal Infections/epidemiology , Staphylococcal Infections/etiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL