Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
ACS Sens ; 7(9): 2759-2766, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2008244


The multiplexed digital polymerase chain reaction (PCR) is widely used in molecular diagnosis owing to its high sensitivity and throughput for multiple target detection compared with the single-plexed digital PCR; however, current multiplexed digital PCR technologies lack efficient coding strategies that do not compromise the sensitivity and signal-to-noise (S/N) ratio. Hence, we propose a fluorescent-encoded bead-based multiplexed droplet digital PCR method for ultra-high coding capacity, along with the creative design of universal sequences (primer and fluorescent TaqMan probe) for ultra-sensitivity and high S/N ratios. First, pre-amplification is used to introduce universal primers and universal fluorescent TaqMan probes to reduce primer interference and background noise, as well as to enrich regions of interest in targeted analytes. Second, fluorescent-encoded beads (FEBs), coupled with the corresponding target sequence-specific capture probes through streptavidin-biotin conjugation, are used to partition amplicons via hybridization according to the Poisson distribution. Finally, FEBs mixed with digital PCR mixes are isolated into droplets generated via Sapphire chips (Naica Crystal Digital PCR system) to complete the digital PCR and result analysis. For proof of concept, we demonstrate that this method achieves high S/N ratios in a 5-plexed assay for influenza viruses and SARS-CoV-2 at concentrations below 10 copies and even close to a single molecule per reaction without cross-reaction, further verifying the possibility of clinical actual sample detection with 100% accuracy, which paves the way for the realization of digital PCR with ultrahigh coding capacity and ultra-sensitivity.

Biotin , COVID-19 , Aluminum Oxide , COVID-19 Testing , Fluorescent Dyes/chemistry , Humans , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Streptavidin/chemistry
ACS Appl Mater Interfaces ; 13(7): 7966-7976, 2021 Feb 24.
Article in English | MEDLINE | ID: covidwho-1075146


Nowadays, there is an increasing demand for more accessible routine diagnostics for patients with respect to high accuracy, ease of use, and low cost. However, the quantitative and high accuracy bioassays in large hospitals and laboratories usually require trained technicians and equipment that is both bulky and expensive. In addition, the multistep bioassays and long turnaround time could severely affect the disease surveillance and control especially in pandemics such as influenza and COVID-19. In view of this, a portable, quantitative bioassay device will be valuable in regions with scarce medical resources and help relieve burden on local healthcare systems. Herein, we introduce the MagiCoil diagnostic device, an inexpensive, portable, quantitative, and rapid bioassay platform based on the magnetic particle spectrometer (MPS) technique. MPS detects the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses the harmonics from oscillating MNPs as metrics for sensitive and quantitative bioassays. This device does not require trained technicians to operate and employs a fully automatic, one-step, and wash-free assay with a user friendly smartphone interface. Using a streptavidin-biotin binding system as a model, we show that the detection limit of the current portable device for streptavidin is 64 nM (equal to 5.12 pmole). In addition, this MPS technique is very versatile and allows for the detection of different diseases just by changing the surface modifications on MNPs. Although MPS-based bioassays show high sensitivities as reported in many literatures, at the current stage, this portable device faces insufficient sensitivity and needs further improvements. It is foreseen that this kind of portable device can transform the multistep, laboratory-based bioassays to one-step field testing in nonclinical settings such as schools, homes, offices, etc.

Biological Assay , Magnetite Nanoparticles/chemistry , Smartphone , Streptavidin/analysis , Biological Assay/instrumentation , COVID-19/diagnosis , Humans , Hydrodynamics , Influenza, Human/diagnosis , Magnetic Phenomena , Particle Size , Surface Properties