Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMJ Open ; 12(3): e056706, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1794496

ABSTRACT

OBJECTIVES: To determine the causes of lobar pneumonia in rural Gambia. DESIGN AND SETTING: Population-based pneumonia surveillance at seven peripheral health facilities and two regional hospitals in rural Gambia. 7-valent pneumococcal conjugate vaccine (PCV7) was introduced routinely in August 2009 and replaced by PCV13 from May 2011. METHODS: Prospective pneumonia surveillance was undertaken among all ages with referral of suspected pneumonia cases to the regional hospitals. Blood culture and chest radiographs were performed routinely while lung or pleural aspirates were collected from selected, clinically stable patients with pleural effusion on radiograph and/or large, dense, peripheral consolidation. We used conventional microbiology, and from 8 April 2011 to 17 July 2012, used a multiplex PCR assay on lung and pleural aspirates. We calculated proportions with pathogens, associations between coinfecting pathogens and PCV effectiveness. PARTICIPANTS: 2550 patients were admitted with clinical pneumonia; 741 with lobar pneumonia or pleural effusion. We performed 181 lung or pleural aspirates and multiplex PCR on 156 lung and 4 pleural aspirates. RESULTS: Pathogens were detected in 116/160 specimens, the most common being Streptococcus pneumoniae(n=68), Staphylococcus aureus (n=26) and Haemophilus influenzae type b (n=11). Bacteria (n=97) were more common than viruses (n=49). Common viruses were bocavirus (n=11) and influenza (n=11). Coinfections were frequent (n=55). Moraxella catarrhalis was detected in eight patients and in every case there was coinfection with S. pneumoniae. The odds ratio of vaccine-type pneumococcal pneumonia in patients with two or three compared with zero doses of PCV was 0.17 (95% CI 0.06 to 0.51). CONCLUSIONS: Lobar pneumonia in rural Gambia was caused primarily by bacteria, particularly S. pneumoniae and S. aureus. Coinfection was common and M. catarrhalis always coinfected with S. pneumoniae. PCV was highly efficacious against vaccine-type pneumococcal pneumonia.


Subject(s)
Coinfection , Pleural Effusion , Pneumococcal Infections , Pneumonia, Pneumococcal , Viruses , Coinfection/epidemiology , Gambia/epidemiology , Humans , Infant , Lung , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/diagnosis , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prospective Studies , Staphylococcus aureus , Streptococcus pneumoniae/genetics
2.
Travel Med Infect Dis ; 44: 102183, 2021.
Article in English | MEDLINE | ID: covidwho-1473503

ABSTRACT

BACKGROUND: Several outbreaks of pneumococcal pneumonia among shipyard workers have been described. In this study, following a previous report of grouped cases, we aimed to elucidate the features of disease onset. METHODS: We compared the population characteristics of shipyard workers with a confirmed diagnosis of pneumococcal pneumonia (N = 38) to those of workers without pneumonia (N = 53). We compared nine S. pneumoniae strains isolated from patients with pneumonia by capsular serotyping, multi-locus sequence typing, and whole genome sequencing. RESULTS: Shipyard workers with Streptococcus pneumoniae pneumonia were more frequently from Italy (P = 0.016), had at least one underlying condition (P = 0.024), lived on-board the ship (P = 0.009). None of these factors was independent by multivariate analysis. While capsular serotyping enabled us to identify four different serotypes: 4 (n = 5), 8 (n = 2), 9 N (n = 1), and 3 (n = 1), by sequence typing, we distinguished five sequence types (STs): ST801 (n = 4), ST205 (n = 2), ST1220 (n = 1), ST1280 (n = 1), and ST66 (n = 1). Whole genome sequencing confirmed the results obtained by MLST. Genomes of isolates of the same sequence type were similar with ≤80 single-nucleotide polymorphisms. CONCLUSIONS: We confirmed that the onset of pneumococcal infection among shipyard workers was attributable to both a person-to-person spread of single strains of S. pneumoniae and a shift of different strains from commensal to pathogen under favourable conditions (professional exposure, viral infections). Control measures should therefore be implemented by taking into account these features.


Subject(s)
Pneumococcal Infections , Pneumonia, Pneumococcal , Humans , Multilocus Sequence Typing , Pneumonia, Pneumococcal/epidemiology , Serogroup , Serotyping , Streptococcus pneumoniae/genetics
3.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-1264469

ABSTRACT

Polymerase chain reaction (PCR) is the standard in nucleic acid amplification technology for infectious disease pathogen detection and has been the primary diagnostic tool employed during the global COVID-19 pandemic. Various PCR technology adaptations, typically using two-oligonucleotide dye-binding methods or three-oligonucleotide hydrolysis probe systems, enable real-time multiplex target detection or single-base specificity for the identification of single-nucleotide polymorphisms (SNPs). A small number of two-oligonucleotide PCR systems facilitating both multiplex detection and SNP identification have been reported; however, these methods often have limitations in terms of target specificity, production of variable or false-positive results, and the requirement for extensive optimisation or post-amplification analysis. This study introduces 3' Tth endonuclease cleavage PCR (3TEC-PCR), a two-oligonucleotide PCR system incorporating a modified primer/probe and a thermostable cleavage enzyme, Tth endonuclease IV, for real-time multiplex detection and SNP identification. Complete analytical specificity, low limits of detection, single-base specificity, and simultaneous multiple target detection have been demonstrated in this study using 3TEC-PCR to identify bacterial meningitis associated pathogens. This is the first report of a two-oligonucleotide, real-time multiplex PCR technology with single-base specificity using Tth endonuclease IV.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Alleles , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Haemophilus influenzae/genetics , Humans , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/microbiology , Neisseria meningitidis/genetics , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL