Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
AIDS ; 35(10): 1704-1706, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-2135810

ABSTRACT

Hepatitis delta virus (HDV) is a highly pathogenic virus which can cause rapidly progressive liver disease in individuals with chronic hepatitis B virus and for which treatment options are limited. The incidence of sexually transmitted HDV infection is unknown. Here we report the case of a HDV seronegative man with pre-existent HIV/hepatitis B virus, taking effective tenofovir-containing antiretroviral therapy, who experienced a significant acute transaminitis with HDV antibody seroconversion and viraemia and no other identifiable cause.


Subject(s)
Coinfection , HIV Infections , Hepatitis B, Chronic , Hepatitis B , Hepatitis D , Superinfection , HIV Infections/complications , HIV Infections/drug therapy , Hepatitis B/complications , Hepatitis B virus , Hepatitis B, Chronic/complications , Hepatitis D/complications , Hepatitis D/diagnosis , Hepatitis Delta Virus , Humans , Male
2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2116249

ABSTRACT

The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated many challenges to find an effective drug combination for hospitalized patients with severe forms of coronavirus disease 2019 (COVID-19) pneumonia. We conducted a retrospective cohort study, including 182 patients with severe COVID-19 pneumonia hospitalized between March and October 2021 in a Pneumology Hospital from Cluj-Napoca, Romania. Among patients treated with standard of care, 100 patients received remdesivir (R group) and 82 patients received the combination of remdesivir plus tocilizumab (RT group). We compared the clinical outcomes, the inflammatory markers, superinfections, oxygen requirement, intensive care unit (ICU) admission and mortality rate before drug administration and 7 days after in R group and RT group. Borg score and oxygen support showed an improvement in the R group (p < 0.005). Neutrophiles, C-reactive protein (CRP) and serum ferritin levels decreased significantly in RT group but with a higher rate of superinfection in this group. ICU admission and death did not differ significantly between groups. The combination of remdesivir plus tocilizumab led to a significantly improvement in the inflammatory markers and a decrease in the oxygen requirement. Although the superinfection rate was higher in RT group than in R group, no significant difference was found in the ICU admission and mortality rate between the groups.


Subject(s)
COVID-19 , Superinfection , Humans , COVID-19/drug therapy , Retrospective Studies , SARS-CoV-2 , Oxygen
3.
Epidemiol Infect ; 150: e195, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2106270

ABSTRACT

Episodes of bacterial superinfections have been well identified for several respiratory viruses, notably influenza. In this retrospective study, we compared the frequency of superinfections in COVID-19 patients to those found in influenza-positive patients, and to controls without viral infection. We included 42 468 patients who had been diagnosed with COVID-19 and 266 261 subjects who had tested COVID-19 negative between 26 February 2020 and 1 May 2021. In addition, 4059 patients were included who had tested positive for the influenza virus between 1 January 2017 and 31 December 2019. Bacterial infections in COVID-19 patients were more frequently healthcare-associated, and acquired in ICUs, were associated with longer ICU stays, and occurred in older and male patients when compared to controls and to influenza patients (P < 0.0001 for all). The most common pathogens proved to be less frequent in COVID-19 patients, including fewer cases of bacteraemia involving E. coli (P < 0.0001) and Klebsiella pneumoniae (P = 0.027) when compared to controls. In respiratory specimens Haemophilus influenzae (P < 0.0001) was more frequent in controls, while Streptococcus pneumoniae (P < 0.0001) was more frequent in influenza patients. Likewise, species associated with nosocomial transmission, such as Pseudomonas aeruginosa and Staphylococcus epidermidis, were more frequent among COVID-19 patients. Finally, we observed a high frequency of Enterococcus faecalis bacteraemia among COVID-19 patients, which were mainly ICU-acquired and associated with a longer timescale to acquisition.


Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Influenza, Human , Superinfection , Humans , Male , Aged , COVID-19/epidemiology , Retrospective Studies , Escherichia coli , Bacterial Infections/epidemiology , Hospitals , Bacteremia/epidemiology
4.
Vet Res ; 53(1): 70, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2064844

ABSTRACT

Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.


Subject(s)
Bovine Respiratory Disease Complex , Cattle Diseases , Coinfection , Pasteurella Infections , Respiratory Tract Diseases , Superinfection , Virus Diseases , Animals , Bacteria , Cattle , Cattle Diseases/microbiology , Coinfection/veterinary , Pasteurella Infections/veterinary , Respiratory System , Respiratory Tract Diseases/veterinary , Superinfection/veterinary , Virus Diseases/veterinary
5.
Microbiol Spectr ; 10(5): e0307522, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053143

ABSTRACT

An estimated one-third of the world's population is infected with Mycobacterium tuberculosis, with the majority being vaccinated with Mycobacterium bovis BCG. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a threat, and we must understand how SARS-CoV-2 can modulate both BCG immunity and tuberculosis pathogenesis. Interestingly, neither BCG vaccination nor tuberculosis infection resulted in differences in clinical outcomes associated with SARS-CoV-2 in transgenic mice. Surprisingly, earlier M. tuberculosis infection resulted in lower SARS-CoV-2 viral loads, mediated by the heightened immune microenvironment of the murine lungs, unlike vaccination with BCG, which had no impact. In contrast, M. tuberculosis-infected tissues had increased bacterial loads and decreased histiocytic inflammation in the lungs following SARS-CoV-2 superinfection. SARS-CoV-2 modulated BCG-induced type 17 responses while decreasing type 1 and increasing type 2 cytokines in M. tuberculosis-infected mice. These findings challenge initial findings of BCG's positive impact on SARS-CoV-2 infection and suggest potential ramifications for M. tuberculosis reactivation upon SARS-CoV-2 superinfection. IMPORTANCE Prior to SARS-CoV-2, M. tuberculosis was the leading infectious disease killer, with an estimated one-third of the world's population infected and 1.7 million deaths a year. Here, we show that SARS-CoV-2 superinfection caused increased bacterial dissemination in M. tuberculosis-infected mice along with immune and pathological changes. SARS-CoV-2 also impacted the immunity of BCG-vaccinated mice, resulting in decreased interleukin-17 (IL-17) levels, while offering no protective effect against SARS-CoV-2. These results demonstrate that SARS-CoV-2 may have a deleterious effect on the ongoing M. tuberculosis pandemic and potentially limit BCG's efficacy.


Subject(s)
COVID-19 , Mycobacterium bovis , Mycobacterium tuberculosis , Superinfection , Tuberculosis, Lymph Node , Mice , Animals , Interleukin-17 , SARS-CoV-2 , BCG Vaccine , Cytokines
7.
Vet Microbiol ; 272: 109499, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1971083

ABSTRACT

Respiratory viral infections are among the major causes of disease in poultry. While viral dual infections are known to occur, viral interference in chicken airways is mechanistically hardly understood. The effects of infectious bronchitis virus (IBV) infection on tissue morphology, sialic acid (sia) expression and susceptibility of the chicken trachea for superinfection with IBV or avian influenza virus (AIV) were studied. In vivo, tracheal epithelium of chickens infected with IBV QX showed marked inflammatory cell infiltration and loss of cilia and goblet cells five days post inoculation. Plant lectin staining indicated that sialic acids redistributed from the apical membrane of the ciliated epithelium and the goblet cell cytoplasm to the basement membrane region of the epithelium. After administration of recombinant viral attachment proteins to slides of infected tissue, retained binding of AIV hemagglutinin, absence of binding of the receptor binding domain (RBD) of IBV M41 and partial reduction of IBV QX RBD were observed. Adult chicken trachea rings were used as ex vivo model to study the effects of IBV QX-induced pathological changes and receptor redistribution on secondary viral infection. AIV H9N2 infection after primary IBV infection was delayed; however, final viral loads reached similar levels as in previously uninfected trachea rings. In contrast, IBV M41 superinfection resulted in 1000-fold lower viral titers over the course of 48 h. In conclusion, epithelial changes in the chicken trachea after viral infection coincide with redistribution and likely specific downregulation of viral receptors, with the extend of subsequent viral interference dependent on viral species.


Subject(s)
Coinfection , Coronavirus Infections , Infectious bronchitis virus , Influenza A Virus, H9N2 Subtype , Poultry Diseases , Superinfection , Animals , Chickens , Coinfection/veterinary , Coronavirus Infections/veterinary , Infectious bronchitis virus/physiology , Influenza A Virus, H9N2 Subtype/physiology , Superinfection/veterinary , Trachea
8.
Eur Geriatr Med ; 13(5): 1161-1167, 2022 10.
Article in English | MEDLINE | ID: covidwho-1930646

ABSTRACT

PURPOSE: Current guidance discourages use of antibiotics in COVID-19. However, in older adults, superadded infection may be common and require treatment. Our aim was to investigate the occurrence and outcomes from possible superadded infections, occurring within 2 weeks of hospitalization, in older adults with COVID-19. METHODS: This was a single centre, observational cohort study. We collected data from patients admitted to older adult wards who had tested positive for the Sars-CoV-2 virus on viral PCR between 1st October and 1st December 2020. The primary outcome was inpatient death occurring within 90 days of COVID-19 diagnosis. The secondary outcome was length of stay in hospital. Associations were described using univariable and multivariable models, and time to event data. RESULTS: Of 266 patients with COVID-19, 43% (115) had evidence of superadded infections (91 with positive bacterial cultures and 36 instances of radiological lobar consolidation). Patients with superadded infections were more likely to die (45.2 versus 30.7%, p = 0.020) and had an increased length of stay (23 versus 18 days, p = 0.026). CONCLUSIONS: Recommendations to avoid antibiotics in COVID-19 may not be applicable to an older adult population. Assessing for possible superadded infections is warranted in this group.


Subject(s)
COVID-19 , Superinfection , Aged , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , COVID-19 Testing , Cohort Studies , Humans , SARS-CoV-2
9.
Nat Commun ; 13(1): 3645, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1908172

ABSTRACT

Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.


Subject(s)
COVID-19 , Superinfection , Genome, Viral/genetics , Humans , New York City/epidemiology , Recombination, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Microbiol Spectr ; 10(3): e0014022, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1891745

ABSTRACT

A high rate of bacterial and fungal superinfections was reported in critically ill patients with COVID-19. However, diagnosis can be challenging. The aim of this study is to evaluate the sensitivity and the clinical utility of the point-of-care method T2 magnetic resonance (T2MR) with the gold standard: the blood culture. T2MR can potentially detect five different Candida species and six common bacteria (so-called "ESKAPE" pathogens including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinet`obacter baumanii, Pseudomonas aeruginosa, and Enterococcus faecium). If superinfection was suspected in patients with COVID-19 admitted to the intensive care unit, blood culture and two panels of T2MR were performed. Eighty-five diagnostic bundles were performed in 60 patients in total. T2MR detected an ESKAPE pathogen in 9 out of 85 (10.6%) samples, compared to BC in 3 out of 85 (3.5%). A Candida species was detected in 7 of 85 (8.2%) samples of T2MR compared to 1 out of 85(1.2%) in blood culture. The mean time to positive test result in samples with concordant positive results was 4.5 h with T2MR and 52.5 h with blood culture. The additional use of T2MR enables a highly sensitive and rapid detection of ESKAPE and Candida pathogens. IMPORTANCE Coronavirus disease 2019 (COVID-19) has led to a high number of deaths since the beginning of the pandemic worldwide. One of the reasons is the high number of bacterial and fungal superinfections in patients suffering from critical disease. However, diagnosis is often challenging. In this study we could show that the additional use of the culture-independent method T2MR did not only show a much higher detection rate of bacterial and fungal pathogens but also a significantly shorter time until detection and therapy change compared to the gold standard: the blood culture. The implementation of T2MRin the care of patients with severe course of COVID-19 might lead to an earlier sufficient antimicrobial therapy and as a result lower mortality and less use of broad-spectrum unnecessary therapy reducing the risk of resistance development.


Subject(s)
COVID-19 , Candidemia , Enterococcus faecium , Superinfection , Anti-Bacterial Agents/therapeutic use , Blood Culture , COVID-19/diagnosis , Candida , Candidemia/diagnosis , Candidemia/drug therapy , Candidemia/microbiology , Escherichia coli , Humans , Magnetic Resonance Spectroscopy/methods , Superinfection/drug therapy
11.
J Infect ; 85(1): 57-63, 2022 07.
Article in English | MEDLINE | ID: covidwho-1851543

ABSTRACT

OBJECTIVES: To determine the incidence and characteristics of superinfections in mechanically ventilated COVID-19 patients, and the impact of dexamethasone as standard therapy. METHODS: This multicentre, observational, retrospective study included patients ≥ 18 years admitted from March 1st 2020 to January 31st 2021 with COVID-19 infection who received mechanical ventilation. Patient characteristics, clinical characteristics, therapy and survival were examined. RESULTS: 155/156 patients (115 men, mean age 62 years, range 26-84 years) were included. 67 patients (43%) had 90 superinfections, pneumonia dominated (78%). Superinfections were associated with receiving dexamethasone (66% vs 32%, p<0.0001), autoimmune disease (18% vs 5.7%, p<0.016) and with longer ICU stays (26 vs 17 days, p<0,001). Invasive fungal infections were reported exclusively in dexamethasone-treated patients [8/67 (12%) vs 0/88 (0%), p<0.0001]. Unadjusted 90-day survival did not differ between patients with or without superinfections (64% vs 73%, p=0.25), but was lower in patients receiving dexamethasone versus not (58% vs 78%, p=0.007). In multiple regression analysis, superinfection was associated with dexamethasone use [OR 3.7 (1.80-7.61), p<0.001], pre-existing autoimmune disease [OR 3.82 (1.13-12.9), p=0.031] and length of ICU stay [OR 1.05 p<0.001]. CONCLUSIONS: In critically ill COVID-19 patients, dexamethasone as standard of care was strongly and independently associated with superinfections.


Subject(s)
Autoimmune Diseases , COVID-19 , Superinfection , Adrenal Cortex Hormones/adverse effects , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/etiology , Dexamethasone/adverse effects , Humans , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Superinfection/etiology
12.
Rev Esp Quimioter ; 35 Suppl 1: 64-66, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1836621

ABSTRACT

In the last two years, the capacity of our hospitals has clearly been overwhelmed due to the COVID-19 pandemic The patient who comes to the hospital with a respiratory coinfection does not have the same characteristics as the patient who suffers a superinfection while hospitalized. The number of secondary infections increase proportionally to the severity of the patient's disease. Besides, pathogens that cause a coinfection are clearly differentiated from the pathogens that cause a superinfection. However, in patients subjected to airway manipulation, superinfections by distinct pathogens can occur. Seventy five percent of patients admitted worldwide with COVID-19 (especially during the first two waves of the pandemic) received some form of antibiotic treatment during admission. In this context, it is essential to develop and implement algorithms that allow us to define the predictors in each individual case for the development of a superinfection.


Subject(s)
COVID-19 , Coinfection , Respiratory Tract Infections , Superinfection , COVID-19/complications , Humans , Pandemics , Respiratory Tract Infections/epidemiology , Superinfection/drug therapy
13.
Ther Adv Respir Dis ; 16: 17534666221096040, 2022.
Article in English | MEDLINE | ID: covidwho-1822140

ABSTRACT

PURPOSE: We aimed to better understand the pathophysiology of SARS-CoV-2 pneumonia in non-critically ill hospitalized patients secondarily presenting with clinical deterioration and increase in oxygen requirement without any identified worsening factors. METHODS: We consecutively enrolled patients without clinical or biological evidence for superinfection, without left ventricular dysfunction and for whom a pulmonary embolism was discarded by computed tomography (CT) pulmonary angiography. We investigated lung ventilation and perfusion (LVP) by LVP scintigraphy, and, 24 h later, left and right ventricular function by Tc-99m-labeled albumin-gated blood-pool scintigraphy with late (60 mn) tomographic albumin images on the lungs to evaluate lung albumin retention that could indicate microvascular injuries with secondary edema. RESULTS: We included 20 patients with confirmed SARS-CoV-2 pneumonia. All had CT evidence of organizing pneumonia and normal left ventricular ejection fraction. No patient demonstrated preserved ventilation with perfusion defect (mismatch), which may discard a distal lung thrombosis. Patterns of ventilation and perfusion were heterogeneous in seven patients (35%) with healthy lung segments presenting a relative paradoxical hypoperfusion and hypoventilation compared with segments with organizing pneumonia presenting a relative enhancement in perfusion and preserved ventilation. Lung albumin retention in area of organizing pneumonia was observed in 12 patients (60%), indicating microvascular injuries, increase in vessel permeability, and secondary edema. CONCLUSION: In hospitalized non-critically ill patients without evidence of superinfection, pulmonary embolism, or cardiac dysfunction, various types of damage may contribute to clinical deterioration including microvascular injuries and secondary edema, inconsistencies in lung segments vascularization suggesting a dysregulation of the balance in perfusion between segments affected by COVID-19 and others. SUMMARY STATEMENT: Microvascular injuries and dysregulation of the balance in perfusion between segments affected by COVID-19 and others are present in non-critically ill patients without other known aggravating factors. KEY RESULTS: In non-critically ill patients without evidence of superinfection, pulmonary embolism, macroscopic distal thrombosis or cardiac dysfunction, various types of damage may contribute to clinical deterioration including 1/ microvascular injuries and secondary edema, 2/ inconsistencies in lung segments vascularization with hypervascularization of consolidated segments contrasting with hypoperfusion of not affected segments, suggesting a dysregulation of the balance in perfusion between segments affected by COVID-19 and others.


Subject(s)
COVID-19 , Clinical Deterioration , Heart Diseases , Pulmonary Embolism , Superinfection , Albumins , Critical Illness , Edema/diagnostic imaging , Edema/etiology , Humans , Lung/diagnostic imaging , Neovascularization, Pathologic , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
14.
Microb Genom ; 8(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1746155

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.


Subject(s)
COVID-19/virology , Coinfection/virology , SARS-CoV-2/genetics , Superinfection/virology , Brazil , Genome, Viral , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide
15.
Clin Respir J ; 16(4): 329-334, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1741359

ABSTRACT

INTRODUCTION: Coronavirus disease-2019 (COVID-19) may lead to acute respiratory distress syndrome requiring extracorporeal membrane oxygenation (ECMO). Patterns of inflammatory bronchoalveolar cells in COVID-19 patients treated with ECMO are not well described. OBJECTIVE: We aimed to describe inflammatory cell subpopulations in blood and bronchoalveolar lavages (BALs) obtained in critically ill COVID-19 patients shortly after ECMO implementation. METHODS: BAL was performed in the middle lobe in 12 consecutive ECMO-treated COVID-19 patients. Trained cytologists analyzed peripheral blood and BAL cells using flow cytometry and routine staining, respectively. Data were interpreted in relation to dexamethasone administration and weaning from ECMO and ventilator. RESULTS: High neutrophil proportions (66% to 88% of total cells) were observed in the absence of bacterial superinfection and more frequently in dexamethasone-free patients (83% [82-85] vs. 29% [8-68], P = 0.006), suggesting that viral infection could be responsible of predominantly neutrophilic lung inflammation. Successful weaning from ECMO/ventilator could not be predicted by the peripheral white blood and BAL cell pattern. CONCLUSION: High neutrophil proportions can be observed in critically ill COVID-19 patients despite the lack of microbiological evidence on BAL of bacterial superinfection. Dexamethasone was associated with lower neutrophil proportions in BAL. Our study was probably underpowered to provide BAL cell pattern helpful to predict weaning from ECMO/ventilator.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Superinfection , Bronchoalveolar Lavage Fluid , COVID-19/therapy , Critical Illness , Dexamethasone/therapeutic use , Humans , Respiration, Artificial
16.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(4): 158-165, 2022 04.
Article in English | MEDLINE | ID: covidwho-1683091

ABSTRACT

INTRODUCTION: Bacterial/fungal coinfection and superinfections contribute to the increased morbi-mortality of viral respiratory infections (RIs). The main objective of this study was to determine the incidence of these infections in hospitalized patients with COVID-19. METHOD: Retrospective observational study of all patients admitted for COVID-19 and bacterial/fungal infections at the Hospital Clínico Universitario of Valladolid, Spain (March 1-May 31, 2020). Demographic, clinical and microbiological data were compared based on Intensive Care Unit (ICU) admission and predictors of mortality by were identified using multivariate logistic regression analyses. RESULTS: Of the 712 COVID-19 patients, 113 (16%) presented bacterial/fungal coinfections or superinfections. Their median age was 73 years (IQR 57-89) and 59% were men. The profiles of ICU patients (44%) included male, SARS-CoV-2 pneumonia, leukocytosis, elevated inteleukin-6, with interferon ß-1b and tocilizumab and superinfection (p < 0.05). Coinfections were diagnosed in 5% (39/712) patients. Most common pathogens of respiratory coinfection (18) were Streptococcus pneumoniae (6) and Staphylococcus aureus (6). Superinfections were detected in 11% (80/712) patients. Urinary (53) and RI (39) constituted the majority of superinfections Acinetobacter baumannii multidrug-resistant was the main agent of IR and bacteremia. An outbreak of A. baumannii contributed to this result. Three patients were considered to have probable pulmonary aspergillosis. Mortality was higher in UCI patients (50% vs. 29%, p = 0.028). The predictive factors of mortality included being a male with various comorbidities, SARS-CoV-2 pneumonia, bacteremia and superinfections from A. baumannii. CONCLUSION: The outbreak of A. baumannii was a determining factor in the increases of the incidence of infection and the morbi-mortality of ICU patients.


Subject(s)
Bacteremia , COVID-19 , Coinfection , Mycoses , Staphylococcal Infections , Superinfection , Aged , COVID-19/complications , COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/microbiology , Female , Humans , Male , Mycoses/microbiology , SARS-CoV-2 , Spain/epidemiology , Superinfection/epidemiology , Tertiary Care Centers
17.
Pancreatology ; 22(3): 339-347, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1670986

ABSTRACT

BACKGROUND: SARS-CoV-2 can cause acute pancreatitis (AP) and SARS-CoV-2 superinfection can occur in patients with AP during prolonged hospitalisation. Our objective was to characterize SARS-CoV-2 related AP and study the impact of SARS-CoV-2 superinfection on outcomes in AP. METHODS: In this multicentre prospective study, all patients with AP and SARS-CoV-2 infection between August 2020 and February 2021 were divided into two groups: SARS-CoV-2-related AP and superadded SARS-CoV-2 infection in patients with AP. The two groups were compared with each other and the whole cohort was compared with a non-COVID AP cohort. RESULTS: A total of 85 patients with SARS-CoV-2 and AP (SARS-CoV-2-related AP; n = 18 and AP with SARS-CoV-2 superadded infection; n = 67) were included during the study period. They had a higher mortality [28 (32.9%) vs. 44 (19.1%), aOR 2.8 (95% CI, 1.5-5.3)] than 230 propensity matched non-COVID AP patients. Mortality in SARS-CoV-2 and AP patients was due to critical COVID. SARS-CoV-2-related- AP (n = 18) had a higher but statistically insignificant mortality than SARS-CoV-2 superinfection in AP [8/18 (44.4%) vs 20/67 (29.8%), p = 0.24]. On multivariable analysis, infection with SARS-CoV-2 (aHR 2.3; 95% CI, 1.43.7) was a predictor of in-hospital mortality in addition to organ failure (OF) in patients with AP. CONCLUSION: Patients with AP and SARS-CoV-2 infection had a higher mortality than matched non-COVID AP patients which was largely attributable to the severity of COVID-19. SARS-CoV-2 related AP had higher OF and in-hospital mortality.


Subject(s)
COVID-19 , Pancreatitis, Chronic , Superinfection , Acute Disease , Humans , Prospective Studies , SARS-CoV-2
19.
Scand J Clin Lab Invest ; 82(2): 108-114, 2022 04.
Article in English | MEDLINE | ID: covidwho-1662010

ABSTRACT

In critical patients with Coronavirus Disease (COVID-19), we investigated the diagnostic value of presepsin in the early diagnosis of superinfection with sepsis, and the effect of antibiotic treatment (AT) in the levels of presepsin and procalcitonin and C-reactive protein. A total of 68 critical patients with sepsis and septic shock in the intensive care unit and 20 outpatients (control group) with COVID-19 were taken. ICU patients (n = 68) were further divided into three groups. C(-)AT(-) had negative blood or tracheal aspirate cultures (C) and not AT on admission to ICU (n = 18), C(-)AT(+) had negative C and AT on admission to intensive care unit (n = 31) and C(+) had positive C (n = 19). Presepsin, procalcitonin, C-reactive protein results were compared between the groups. There were no significant relationships between presepsin levels with sepsis, septic shock, mortality, or length of stay in ICU in patients with COVID-19. For procalcitonin and C-reactive protein levels in C(-)AT(+) and C(+) groups were significantly higher than in control and C(-)AT(-) groups (p < .001). C-reactive protein levels in C(-)AT(-) group were significantly higher than in the control group (p < .001). PCT and CRP, there was no difference between C(-)AT(+) and C(+) groups, and procalcitonin there was no difference between control and C(-)AT(-) groups. Presepsin was not found as a useful biomarker for the prediction of sepsis in COVID-19 patients. These study findings indicate that procalcitonin and C-reactive protein may be an indicator of an early diagnostic marker for superinfection in critical COVID-19 patients.


Subject(s)
COVID-19 , Sepsis , Shock, Septic , Superinfection , Biomarkers , C-Reactive Protein/analysis , COVID-19/diagnosis , Early Diagnosis , Humans , Lipopolysaccharide Receptors , Peptide Fragments , Procalcitonin , Shock, Septic/diagnosis
20.
Viruses ; 13(12)2021 11 25.
Article in English | MEDLINE | ID: covidwho-1590034

ABSTRACT

Disease tolerance has emerged as an alternative way, in addition to host resistance, to survive viral-bacterial co-infections. Disease tolerance plays an important role not in reducing pathogen burden, but in maintaining tissue integrity and controlling organ damage. A common co-infection is the synergy observed between influenza virus and Streptococcus pneumoniae that results in superinfection and lethality. Several host cytokines and cells have shown promise in promoting tissue protection and damage control while others induce severe immunopathology leading to high levels of morbidity and mortality. The focus of this review is to describe the host cytokines and innate immune cells that mediate disease tolerance and lead to a return to host homeostasis and ultimately, survival during viral-bacterial co-infection.


Subject(s)
Immunity, Innate , Influenza, Human/immunology , Orthomyxoviridae/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Coinfection , Cytokines/immunology , Homeostasis , Humans , Influenza, Human/microbiology , Influenza, Human/virology , Pneumococcal Infections/microbiology , Superinfection
SELECTION OF CITATIONS
SEARCH DETAIL