Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add filters

Document Type
Year range
1.
Mikrochim Acta ; 188(10): 316, 2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1604245

ABSTRACT

A novel label-free surface plasmon resonance (SPR) aptasensor has been constructed for the detection of N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots (Nb2C-SH QDs) as the bioplatform for anchoring N-gene-targeted aptamer. In the presence of SARS-CoV-2 N-gene, the immobilized aptamer strands changed their conformation to specifically bind with N-gene. It thus increased the contact area or enlarged the distance between aptamer and the SPR chip, resulting in a change of the SPR signal irradiated by the laser (He-Ne) with the wavelength (λ) of 633 nm. Nb2C QDs were derived from Nb2C MXene nanosheets via a solvothermal method, followed by functionalization with octadecanethiol through a self-assembling method. Subsequently, the gold chip for SPR measurements was modified with Nb2C-SH QDs via covalent binding of the Au-S bond also by self-assembling interaction. Nb2C-SH QDs not only resulted in high bioaffinity toward aptamer but also enhanced the SPR response. Thus, the Nb2C-SH QD-based SPR aptasensor had low limit of detection (LOD) of 4.9 pg mL-1 toward N-gene within the concentration range 0.05 to 100 ng mL-1. The sensor also showed excellent selectivity in the presence of various respiratory viruses and proteins in human serum and high stability. Moreover, the Nb2C-SH QD-based SPR aptasensor displayed a vast practical application for the qualitative analysis of N-gene from different samples, including seawater, seafood, and human serum. Thus, this work can provide a deep insight into the construction of the aptasensor for detecting SARS-CoV-2 in complex environments. A novel label-free surface plasmon resonance aptasensor has been constructed to detect sensitively and selectively the N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots as the scaffold to anchor the N-gene-targeted aptamer.


Subject(s)
Aptamers, Nucleotide , COVID-19/diagnosis , Niobium/chemistry , Nucleocapsid/metabolism , Quantum Dots/chemistry , SARS-CoV-2/isolation & purification , Surface Plasmon Resonance/methods , COVID-19/virology , Humans , Limit of Detection
2.
J Nanobiotechnology ; 20(1): 6, 2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1608546

ABSTRACT

BACKGROUND: Gold nanoparticles (AuNPs) have been widely used in local surface plasmon resonance (LSPR) immunoassays for biomolecule sensing, which is primarily based on two conventional methods: absorption spectra analysis and colorimetry. The low figure of merit (FoM) of the LSPR and high-concentration AuNP requirement restrict their limit of detection (LOD), which is approximately ng to µg mL-1 in antibody detection if there is no other signal or analyte amplification. Improvements in sensitivity have been slow in recent for a long time, and pushing the boundary of the current LOD is a great challenge of current LSPR immunoassays in biosensing. RESULTS: In this work, we developed spectral image contrast-based flow digital nanoplasmon-metry (Flow DiNM) to push the LOD boundary. Comparing the scattering image brightness of AuNPs in two neighboring wavelength bands near the LSPR peak, the peak shift signal is strongly amplified and quickly detected. Introducing digital analysis, the Flow DiNM provides an ultrahigh signal-to-noise ratio and has a lower sample volume requirement. Compared to the conventional analog LSPR immunoassay, Flow DiNM for anti-BSA detection in pure samples has an LOD as low as 1 pg mL-1 within only a 15-min detection time and 500 µL sample volume. Antibody assays against spike proteins of SARS-CoV-2 in artificial saliva that contained various proteins were also conducted to validate the detection of Flow DiNM in complicated samples. Flow DiNM shows significant discrimination in detection with an LOD of 10 pg mL-1 and a broad dynamic detection range of five orders of magnitude. CONCLUSION: Together with the quick readout time and simple operation, this work clearly demonstrated the high sensitivity and selectivity of the developed Flow DiNM in rapid antibody detection. Spectral image contrast and digital analysis further provide a new generation of LSPR immunoassay with AuNPs.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Surface Plasmon Resonance/methods , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Serological Testing/instrumentation , Equipment Design , Gold/chemistry , Humans , Immunoassay/instrumentation , Immunoassay/methods , Metal Nanoparticles/chemistry , SARS-CoV-2/immunology , Saliva/virology , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance/instrumentation
3.
EBioMedicine ; 74: 103748, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1568650

ABSTRACT

BACKGROUND: Limited knowledge exists regarding antibody affinity maturation following mRNA vaccination in naïve vs. COVID-19 recovered individuals and potential sex differences. METHODS: We elucidated post-vaccination antibody profiles of 69 naïve and 17 COVID-19 convalescent adults using pseudovirus neutralization assay (PsVNA) covering SARS-CoV-2 WA-1, variants of concern (VOCs) and variants of interest (VOIs). Surface Plasmon Resonance (SPR) was used to measure antibody affinity against prefusion spike and receptor binding domain (RBD) and RBD mutants. FINDINGS: Higher neutralizing antibodies were observed in convalescent vs. naïve adults against, WA-1, VOCs, and VOIs. Antibody binding to RBD and RBD mutants showed lower binding of post-vaccination sera from naïve compared with convalescent individuals. Moreover, we observed early antibody affinity maturation in convalescent individuals after one vaccine dose and higher antibody affinity after two doses compared with the naïve group. Among the naïve participants, antibody affinity against the SARS-CoV-2 prefusion spike was significantly higher for males than females even though there were no difference in neutralization titers between sexes. INTERPRETATION: This study demonstrates the impact of prior infection on vaccine-induced antibody affinity maturation and difference in antibody affinity between males and females. Further studies are needed to determine whether antibody affinity may contribute to correlates of protection against SARS-CoV-2 and its variants. FUNDING: The antibody characterization work described in this manuscript was supported by FDA's Medical Countermeasures Initiative (MCMi) grant #OCET 2021-1565 to S.K and intramural FDA-CBER COVID-19 supplemental funds. The SPARTA program was supported by the National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Department of Health and Human Services contract 75N93019C00052, and the University of Georgia (US) grant UGA-001. T.M.R is also supported by the Georgia Research Alliance (US) grant GRA-001. The CTRU was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378.


Subject(s)
/immunology , Antibodies, Neutralizing/blood , Antibody Affinity/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/immunology , Cell Line , Female , Humans , Male , Neutralization Tests , Protein Domains/immunology , Surface Plasmon Resonance , Vaccination , /immunology
4.
Life Sci Alliance ; 5(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1547941

ABSTRACT

The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Microfluidics/methods , SARS-CoV-2/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/immunology , Antibody Affinity , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/blood , COVID-19/etiology , Cross Reactions , Female , Humans , Male , Middle Aged , Severity of Illness Index , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance
5.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: covidwho-1522913

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged virus that causes coronavirus infectious disease 2019 (COVID-19). SARS-CoV-2 spike protein, like SARS-CoV-1, uses the angiotensin converting enzyme 2 (ACE2) as a cellular receptor to initiate infection. Compounds that interfere with the SARS-CoV-2 spike protein receptor binding domain protein (RBD)-ACE2 receptor interaction may function as entry inhibitors. Here, we used a dual strategy of molecular docking and surface plasmon resonance (SPR) screening of compound libraries to identify those that bind to human ACE2 or the SARS-CoV-2 spike protein receptor binding domain (RBD). Molecular modeling screening interrogated 57,641 compounds and focused on the region of ACE2 that is engaged by RBD of the SARS-CoV-2 spike glycoprotein and vice versa. SPR screening used immobilized human ACE2 and SARS-CoV-2 Spike protein to evaluate the binding of these proteins to a library of 3,141 compounds. These combined screens identified compounds from these libraries that bind at KD (equilibrium dissociation constant) <3 µM affinity to their respective targets, 17 for ACE2 and 6 for SARS-CoV-2 RBD. Twelve ACE2 binders and six of the RBD binders compete with the RBD-ACE2 interaction in an SPR-based competition assay. These compounds included registered drugs and dyes used in biomedical applications. A Vero-E6 cell-based SARS-CoV-2 infection assay was used to evaluate infection blockade by candidate entry inhibitors. Three compounds demonstrated dose-dependent antiviral in vitro potency-Evans blue, sodium lifitegrast, and lumacaftor. This study has identified potential drugs for repurposing as SARS-CoV-2 entry inhibitors or as chemical scaffolds for drug development.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, has caused more than 60 million cases worldwide with almost 1.5 million deaths as of November 2020. Repurposing existing drugs is the most rapid path to clinical intervention for emerging diseases. Using an in silico screen of 57,641 compounds and a biophysical screen of 3,141 compounds, we identified 22 compounds that bound to either the angiotensin converting enzyme 2 (ACE2) and/or the SARS-CoV-2 spike protein receptor binding domain (SARS-CoV-2 spike protein RBD). Nine of these drugs were identified by both screening methods. Three of the identified compounds, Evans blue, sodium lifitegrast, and lumacaftor, were found to inhibit viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay and may have utility as repurposed therapeutics. All 22 identified compounds provide scaffolds for the development of new chemical entities for the treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects , Virus Replication/drug effects , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , Evans Blue/pharmacology , Humans , Molecular Docking Simulation , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sulfones/pharmacology , Surface Plasmon Resonance , Vero Cells
6.
Biosensors (Basel) ; 11(11)2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1502363

ABSTRACT

Coronavirus disease (COVID-19) is a global health crisis caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard test for diagnosing COVID-19. Although it is highly accurate, this lab test requires highly-trained personnel and the turn-around time is long. Rapid and inexpensive immuno-diagnostic tests (antigen or antibody test) are available, but these point of care (POC) tests are not as accurate as the RT-PCR test. Biosensors are promising alternatives to these rapid POC tests. Here we review three types of recently developed biosensors for SARS-CoV-2 detection: surface plasmon resonance (SPR)-based, electrochemical and field-effect transistor (FET)-based biosensors. We explain the sensing principles and discuss the advantages and limitations of these sensors. The accuracies of these sensors need to be improved before they could be translated into POC devices for commercial use. We suggest potential biorecognition elements with highly selective target-analyte binding that could be explored to increase the true negative detection rate. To increase the true positive detection rate, we suggest two-dimensional materials and nanomaterials that could be used to modify the sensor surface to increase the sensitivity of the sensor.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Electrochemical Techniques , Humans , Surface Plasmon Resonance
7.
Front Biosci (Landmark Ed) ; 26(10): 789-798, 2021 10 30.
Article in English | MEDLINE | ID: covidwho-1498508

ABSTRACT

Background: The coronavirus disease 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 210 million individuals globally and resulted in over 4 million deaths since the first report in December 2019. The early use of traditional Chinese medicine (TCM) for light and ordinary patients, can rapidly improve symptoms, shorten hospitalization days and reduce severe cases transformed from light and normal. Many TCM formulas and products have a wide application in treating infectious and non-infectious diseases. Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum), is an important Traditional Chinese Medicine with actions of clearing away heat and eliminating dampness, draining the gallbladder to relieve jaundice, removing blood stasis to alleviate pain, resolving phlegm and arrest cough. In the search for anti-SARS-CoV-2, P. cuspidatum was recommended as as a therapeutic drug of COVID-19 pneumonia.In this study, we aimed to identifies P. cuspidatum is the potential broad-spectrum inhibitor for the treatment of coronaviruses infections. Methods: In the present study , we infected human malignant embryonal rhabdomyoma (RD) cells with the OC43 strain of the coronavirus, which represent an alternative model for SARS-CoV-2 and then employed the cell viability assay kit for the antiviral activity. We combined computer aided virtual screening to predicte the binding site and employed Surface plasmon resonance analysis (SPR) to comfirm the interaction between drugs and coronavirus. We employed fluorescence resonance energy transfer technology to identify drug's inhibition in the proteolytic activity of 3CLpro and Plpro. Results: Based on our results, polydatin and resveratrol derived from P. cuspidatum significantly suppressed HCoV-OC43 replication. 50% inhibitory concentration (IC50) values of polydatin inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 18.66, 125, 14.6 and 25.42 µm, respectively. IC50 values of resveratrol inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 29.81 ,60.86, 16.35 and19.04 µM, respectively. Finally, SPR assay confirmed that polydatin and resveratrol had high affinity to SARS-CoV-2, SARS-CoV 3Clpro, MERS-CoV 3Clpro and PLpro protein. Conclusions: we identified the antiviral activity of flavonoids polydatin and resveratrol on RD cells. Polydatin and resveratrol were found to be specific and selective inhibitors for SARS-CoV-2, 3CLpro and PLpro, viral cysteine proteases. In summary, this study identifies P. cuspidatum as the potential broad-spectrum inhibitor for the treatment of coronaviruses infections.


Subject(s)
Drugs, Chinese Herbal/chemistry , Fallopia japonica/chemistry , Glucosides/pharmacology , Resveratrol/pharmacology , SARS-CoV-2/drug effects , Stilbenes/pharmacology , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Cell Line, Tumor , Cell Survival/drug effects , Glucosides/metabolism , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Medicine, Chinese Traditional/methods , Pandemics , Protein Binding , Resveratrol/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Stilbenes/metabolism , Surface Plasmon Resonance/methods , Viral Proteins/metabolism
8.
Anal Methods ; 13(29): 3297-3306, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1493236

ABSTRACT

Researchers worldwide have been studying alternatives to detect SARS-CoV-2 (COVID-19), and accurate and timely diagnosis is crucial for controlling the outbreaks of the disease. Surface plasmon resonance (SPR) is an effective strategy based on antibodies, and it can be used for simple and fast detection of antibodies due to COVID-19 infection. Accordingly, this paper reports on the highly sensitive and specific detection of antibody responses to SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in COVID-19 patients. In this methodology, spike (S) and nucleocapsid (N) proteins belonging to the coronavirus genome were immobilized on the surface of a gold sensor using self-assembled monolayers. Previously, serum from COVID-19 patients was screened by immunochromatography-based COVID-19 IgG rapid test and/or ELISA in house to determine the presence of IgG titers. Serum from COVID-19-positive patients presenting with IgG were added on the surface and, at the time they bound to proteins, they caused refractive changes in the SPR angle. The antibody detection limit was determined through successive injections into the SPR apparatus - these injections ranged from pure (without dilution) to 1 : 200 µL. The system has shown good reproducibility between runs after coated surface regeneration with 0.1 M glycine-HCl solution (pH 3.0); all experiments were tested in triplicate. The antibodies targeted both S and N fragments and gave a high assay sensitivity by identifying 19 out of 20 COVID-19-positive patients. Most importantly, the assay time took less than 10 min. The results of this study indicate that the proposed simple strategy demonstrates high sensitivity and time-saving in the detection of SARS-CoV-2 response antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Reproducibility of Results , Surface Plasmon Resonance
9.
Analyst ; 146(23): 7207-7217, 2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1493234

ABSTRACT

In this work, we designed and developed a method to detect S1 spike protein of SARS-CoV-2. The portable Localized Surface Plasmon Resonance instrument equipped with a two-channel system was combined with the biotin-streptavidin platform on a nanogold surface to immobilize biotinylated aptamers. The proposed assay does not utilize antibodies or enzyme-based reagents, further simplifying the detection method. Using aptamer-protein bioaffinity interactions, the aptasensor selectively and specifically detected in real-time S1 spike protein, rather than S2 spike protein, RBD spike protein, or bovine serum albumin. The dynamic range and limit of detection of the aptasensor was determined to be 1 nM-100 nM and 0.26 nM, respectively. Notably, aptasensor detected preferentially S1 protein of SARS-CoV-2 compared to SARS-CoV and detected S1 protein with >95% recovery in artificial saliva, and serum albumin, excellent repeatability and shelf-life stability. The method may provide a low-cost, rapid, and real-time detection and monitoring of viruses in the general public.


Subject(s)
COVID-19 , Surface Plasmon Resonance , Biotin , Humans , SARS-CoV-2
10.
Nat Commun ; 12(1): 6103, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475296

ABSTRACT

Multiple SARS-CoV-2 variants of concern (VOCs) have been emerging and some have been linked to an increase in case numbers globally. However, there is yet a lack of understanding of the molecular basis for the interactions between the human ACE2 (hACE2) receptor and these VOCs. Here we examined several VOCs including Alpha, Beta, and Gamma, and demonstrate that five variants receptor-binding domain (RBD) increased binding affinity for hACE2, and four variants pseudoviruses increased entry into susceptible cells. Crystal structures of hACE2-RBD complexes help identify the key residues facilitating changes in hACE2 binding affinity. Additionally, soluble hACE2 protein efficiently prevent most of the variants pseudoviruses. Our findings provide important molecular information and may help the development of novel therapeutic and prophylactic agents targeting these emerging mutants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/isolation & purification , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/ultrastructure , Spodoptera , Surface Plasmon Resonance , Virus Attachment , Virus Internalization
11.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1463707

ABSTRACT

The electron density of a nanoparticle is a very important characteristic of the properties of a material. This paper describes the formation of silver nanoparticles (NPs) and the variation in the electronic state of an NP's surface upon the reduction in Ag+ ions with oxalate ions, induced by UV irradiation. The calculations were based on optical spectrophotometry data. The NPs were characterized using Transmission electron microscopy and Dynamic light scattering. As ~10 nm nanoparticles are formed, the localized surface plasmon resonance (LSPR) band increases in intensity, decreases in width, and shifts to the UV region from 402 to 383 nm. The interband transitions (IBT) band (≤250 nm) increases in intensity, with the band shape and position remaining unchanged. The change in the shape and position of the LSPR band of silver nanoparticles in the course of their formation is attributable to an increasing concentration of free electrons in the particles as a result of a reduction in Ag+ ions on the surface and electron injection by CO2- radicals. The ζ-potential of colloids increases with an increase in electron density in silver nuclei. A quantitative relationship between this shift and electron density on the surface was derived on the basis of the Mie-Drude theory. The observed blue shift (19 nm) corresponds to an approximately 10% increase in the concentration of electrons in silver nanoparticles.


Subject(s)
Electricity , Electrons , Metal Nanoparticles/chemistry , Silver/chemistry , Solutions/chemistry , Chemical Phenomena , Electrochemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Models, Theoretical , Particle Size , Surface Plasmon Resonance
12.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: covidwho-1444119

ABSTRACT

The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.


Subject(s)
COVID-19/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , CD8-Positive T-Lymphocytes/cytology , Crystallography, X-Ray , Cytokines/metabolism , Epitopes/chemistry , HLA-A2 Antigen/chemistry , Humans , Mutation , Peptides/chemistry , Protein Binding , Protein Denaturation , Protein Folding , Surface Plasmon Resonance , T-Lymphocytes, Cytotoxic/immunology
13.
J Agric Food Chem ; 69(41): 12197-12208, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1442683

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (Mpro) inhibitors are considered as potential treatments for coronavirus disease 2019, and dietary polyphenols show promise in SARS-CoV-2 Mpro inhibition based on in silico studies. In the present study, we utilize a combination of biochemical-, surface plasmon resonance-, and docking-based assays to evaluate the inhibition and binding affinities of a series of tannins and their gut microbial metabolites on SARS-CoV-2 Mpro. The tested compounds (2-50 µM) were hydrolyzable tannins, including ellagitannins (punicalagin and ellagic acid) and gallotannins (tannic acid, pentagalloyl glucose, ginnalin A, and gallic acid), and their gut microbial metabolites, urolithins and pyrogallol, respectively. They inhibited SARS-CoV-2 Mpro (by 6.6-100.0% at 50 µM) and bound directly to the Mpro protein (with dissociation constants from 1.1 × 10-6 to 5.3 × 10-5 M). This study sheds light on the inhibitory effects of tannins and their metabolites on SARS-CoV-2 Mpro.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Hydrolyzable Tannins , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors , SARS-CoV-2 , Surface Plasmon Resonance
14.
J Ovarian Res ; 14(1): 126, 2021 Sep 27.
Article in English | MEDLINE | ID: covidwho-1440942

ABSTRACT

BACKGROUND: Infections by the SARS-CoV-2 virus causing COVID-19 are presently a global emergency. The current vaccination effort may reduce the infection rate, but strain variants are emerging under selection pressure. Thus, there is an urgent need to find drugs that treat COVID-19 and save human lives. Hence, in this study, we identified phytoconstituents of an edible vegetable, Bitter melon (Momordica charantia), that affect the SARS-CoV-2 spike protein. METHODS: Components of Momordica charantia were tested to identify the compounds that bind to the SARS-CoV-2 spike protein. An MTiOpenScreen web-server was used to perform docking studies. The Lipinski rule was utilized to evaluate potential interactions between the drug and other target molecules. PyMol and Schrodinger software were used to identify the hydrophilic and hydrophobic interactions. Surface plasmon resonance (SPR) was employed to assess the interaction between an extract component (erythrodiol) and the spike protein. RESULTS: Our in-silico evaluations showed that phytoconstituents of Momordica charantia have a low binding energy range, -5.82 to -5.97 kcal/mol. A docking study revealed two sets of phytoconstituents that bind at the S1 and S2 domains of SARS-CoV-2. SPR showed that erythrodiol has a strong binding affinity (KD = 1.15 µM) with the S2 spike protein of SARS-CoV-2. Overall, docking, ADME properties, and SPR displayed strong interactions between phytoconstituents and the active site of the SARS-CoV-2 spike protein. CONCLUSION: This study reveals that phytoconstituents from bitter melon are potential agents to treat SARS-CoV-2 viral infections due to their binding to spike proteins S1 and S2.


Subject(s)
COVID-19/drug therapy , Momordica charantia/chemistry , Plant Extracts/pharmacology , Spike Glycoprotein, Coronavirus/genetics , Binding Sites/drug effects , COVID-19/genetics , COVID-19/virology , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Molecular Docking Simulation , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Plant Extracts/chemistry , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Surface Plasmon Resonance
15.
Biosens Bioelectron ; 195: 113669, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1439903

ABSTRACT

An inexpensive virus detection scheme with high sensitivity and specificity is desirable for broad applications such as the COVID-19 virus. In this article, we introduce the localized surface plasmon resonance (LSPR) principle on the aggregation of antigen-coated gold nanoparticles (GNPs) to detect SARS-CoV-2 Nucleocapsid (N) proteins. Experiments show this technique can produce results observable by the naked eye in 5 min with a LOD (Limits of Detection) of 150 ng/ml for the N proteins. A comprehensive numerical model of the LSPR effect on the aggregation of GNPs has been developed to identify the key parameters in the reaction processes. The color-changing behaviors can be readily utilized to detect the existence of the virus while the quantitative concentration value is characterized with the assistance of an optical spectrometer. A parameter defined as the ratio of the light absorption intensity at the upper visible band region of 700 nm to the light absorption intensity at the peak optical absorption spectrum of the GNPs at 530 nm is found to have a linear relationship with respect to the N protein concentrations. As such, this scheme could be utilized as an inexpensive testing methodology for applications in POC (Point-of-Care) diagnostics to combat current and future virus-induced pandemics.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Gold , Humans , Nucleocapsid Proteins , SARS-CoV-2 , Surface Plasmon Resonance
16.
J Virol Methods ; 298: 114283, 2021 12.
Article in English | MEDLINE | ID: covidwho-1428226

ABSTRACT

The SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is essential for virus replication, therefore it is a promising drug target. Here we present a surface plasmon resonance approach to study the interaction of RdRp with drugs in real time. We monitored the effect of favipiravir, ribavirin, sofosbuvir triphosphate PSI-7409 and suramin on RdRp binding to RNA immobilized on the chip. Suramin precluded interaction of RdRp with RNA and even displaced RdRp from RNA.


Subject(s)
COVID-19 , RNA-Dependent RNA Polymerase , Antiviral Agents/pharmacology , Drug Interactions , Humans , RNA, Viral , SARS-CoV-2 , Suramin/pharmacology , Surface Plasmon Resonance
17.
J Biol Chem ; 297(4): 101207, 2021 10.
Article in English | MEDLINE | ID: covidwho-1415531

ABSTRACT

Certain sulfated glycans, including those from marine sources, can show potential effects against SARS-CoV-2. Here, a new fucosylated chondroitin sulfate (FucCS) from the sea cucumber Pentacta pygmaea (PpFucCS) (MW ∼10-60 kDa) was isolated and structurally characterized by NMR. PpFucCS is composed of {→3)-ß-GalNAcX-(1→4)-ß-GlcA-[(3→1)Y]-(1→}, where X = 4S (80%), 6S (10%) or nonsulfated (10%), Y = α-Fuc2,4S (40%), α-Fuc2,4S-(1→4)-α-Fuc (30%), or α-Fuc4S (30%), and S = SO3-. The anti-SARS-CoV-2 activity of PpFucCS and those of the FucCS and sulfated fucan isolated from Isostichopus badionotus (IbFucCS and IbSF) were compared with that of heparin. IC50 values demonstrated the activity of the three holothurian sulfated glycans to be ∼12 times more efficient than heparin, with no cytotoxic effects. The dissociation constant (KD) values obtained by surface plasmon resonance of the wildtype SARS-CoV-2 spike (S)-protein receptor-binding domain (RBD) and N501Y mutant RBD in interactions with the heparin-immobilized sensor chip were 94 and 1.8 × 103 nM, respectively. Competitive surface plasmon resonance inhibition analysis of PpFucCS, IbFucCS, and IbSF against heparin binding to wildtype S-protein showed IC50 values (in the nanomolar range) 6, 25, and 6 times more efficient than heparin, respectively. Data from computational simulations suggest an influence of the sulfation patterns of the Fuc units on hydrogen bonding with GlcA and that conformational change of some of the oligosaccharide structures occurs upon S-protein RBD binding. Compared with heparin, negligible anticoagulant action was observed for IbSF. Our results suggest that IbSF may represent a promising molecule for future investigations against SARS-CoV-2.


Subject(s)
Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Sulfates/chemistry , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Partial Thromboplastin Time , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sea Cucumbers/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Surface Plasmon Resonance
19.
Chem Commun (Camb) ; 57(78): 10083-10086, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1404890

ABSTRACT

Zinc deficiency is linked to poor prognosis in COVID-19 patients while clinical trials with zinc demonstrate better clinical outcomes. The molecular targets and mechanistic details of the anti-coronaviral activity of zinc remain obscure. We show that zinc not only inhibits the SARS-CoV-2 main protease (Mpro) with nanomolar affinity, but also viral replication. We present the first crystal structure of the Mpro-Zn2+ complex at 1.9 Å and provide the structural basis of viral replication inhibition. We show that Zn2+ coordinates with the catalytic dyad at the enzyme active site along with two previously unknown water molecules in a tetrahedral geometry to form a stable inhibited Mpro-Zn2+ complex. Further, the natural ionophore quercetin increases the anti-viral potency of Zn2+. As the catalytic dyad is highly conserved across SARS-CoV, MERS-CoV and all variants of SARS-CoV-2, Zn2+ mediated inhibition of Mpro may have wider implications.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Zinc/chemistry , Animals , Binding Sites , COVID-19/pathology , Catalytic Domain , Chlorocebus aethiops , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Ions/chemistry , Kinetics , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Surface Plasmon Resonance , Thermodynamics , Vero Cells , Virus Replication/drug effects
20.
ACS Appl Mater Interfaces ; 13(36): 43696-43707, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1392772

ABSTRACT

Graphene is a two-dimensional semiconducting material whose application for diagnostics has been a real game-changer in terms of sensitivity and response time, variables of paramount importance to stop the COVID-19 spreading. Nevertheless, strategies for the modification of docking recognition and antifouling elements to obtain covalent-like stability without the disruption of the graphene band structure are still needed. In this work, we conducted surface engineering of graphene through heterofunctional supramolecular-covalent scaffolds based on vinylsulfonated-polyamines (PA-VS). In these scaffolds, one side binds graphene through multivalent π-π interactions with pyrene groups, and the other side presents vinylsulfonated pending groups that can be used for covalent binding. The construction of PA-VS scaffolds was demonstrated by spectroscopic ellipsometry, Raman spectroscopy, and contact angle measurements. The covalent binding of -SH, -NH2, or -OH groups was confirmed, and it evidenced great chemical versatility. After field-effect studies, we found that the PA-VS-based scaffolds do not disrupt the semiconducting properties of graphene. Moreover, the scaffolds were covalently modified with poly(ethylene glycol) (PEG), which improved the resistance to nonspecific proteins by almost 7-fold compared to the widely used PEG-monopyrene approach. The attachment of recognition elements to PA-VS was optimized for concanavalin A (ConA), a model lectin with a high affinity to glycans. Lastly, the platform was implemented for the rapid, sensitive, and regenerable recognition of SARS-CoV-2 spike protein and human ferritin in lab-made samples. Those two are the target molecules of major importance for the rapid detection and monitoring of COVID-19-positive patients. For that purpose, monoclonal antibodies (mAbs) were bound to the scaffolds, resulting in a surface coverage of 436 ± 30 ng/cm2. KD affinity constants of 48.4 and 2.54 nM were obtained by surface plasmon resonance (SPR) spectroscopy for SARS-CoV-2 spike protein and human ferritin binding on these supramolecular scaffolds, respectively.


Subject(s)
Biomarkers/analysis , COVID-19/diagnosis , Graphite/chemistry , Immunoassay/methods , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Ethylenes/chemistry , Ferritins/immunology , Ferritins/metabolism , Humans , Point-of-Care Systems , Polyamines/chemistry , Polyethylene Glycols/chemistry , Pyrenes/chemistry , Quantum Theory , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Semiconductors , Spike Glycoprotein, Coronavirus/immunology , Sulfonic Acids/chemistry , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...