Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 11(1): 20012, 2021 10 08.
Article in English | MEDLINE | ID: covidwho-1462029

ABSTRACT

There are currently no cures for coronavirus infections, making the prevention of infections the only course open at the present time. The COVID-19 pandemic has been difficult to prevent, as the infection is spread by respiratory droplets and thus effective, scalable and safe preventive interventions are urgently needed. We hypothesise that preventing viral entry into mammalian nasal epithelial cells may be one way to limit the spread of COVID-19. Here we show that N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ), a positively charged polymer that has been through an extensive Good Laboratory Practice toxicology screen, is able to reduce the infectivity of SARS-COV-2 in A549ACE2+ and Vero E6 cells with a log removal value of - 3 to - 4 at a concentration of 10-100 µg/ mL (p < 0.05 compared to untreated controls) and to limit infectivity in human airway epithelial cells at a concentration of 500 µg/ mL (p < 0.05 compared to untreated controls). In vivo studies using transgenic mice expressing the ACE-2 receptor, dosed nasally with SARS-COV-2 (426,000 TCID50/mL) showed a trend for nasal GCPQ (20 mg/kg) to inhibit viral load in the respiratory tract and brain, although the study was not powered to detect statistical significance. GCPQ's electrostatic binding to the virus, preventing viral entry into the host cells, is the most likely mechanism of viral inhibition. Radiolabelled GCPQ studies in mice show that at a dose of 10 mg/kg, GCPQ has a long residence time in mouse nares, with 13.1% of the injected dose identified from SPECT/CT in the nares, 24 h after nasal dosing. With a no observed adverse effect level of 18 mg/kg in rats, following a 28-day repeat dose study, clinical testing of this polymer, as a COVID-19 prophylactic is warranted.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Nasal Sprays , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/administration & dosage , Chlorocebus aethiops , Humans , Male , Methylation , Mice, Inbred BALB C , Mice, Transgenic , SARS-CoV-2/physiology , Surface-Active Agents/administration & dosage , Surface-Active Agents/therapeutic use , Vero Cells , Viral Load/drug effects
2.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: covidwho-1066792

ABSTRACT

The profound consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mandate urgent development of effective vaccines. Here, we evaluated an Amphiphile (AMP) vaccine adjuvant, AMP-CpG, composed of diacyl lipid-modified CpG, admixed with the SARS-CoV-2 Spike-2 receptor binding domain protein as a candidate vaccine (ELI-005) in mice. AMP modification efficiently delivers CpG to lymph nodes, where innate and adaptive immune responses are generated. Compared to alum, immunization with AMP-CpG induced >25-fold higher antigen-specific T cells that produced multiple T helper 1 (TH1) cytokines and trafficked into lung parenchyma. Antibody responses favored TH1 isotypes (IgG2c and IgG3) and potently neutralized Spike-2-ACE2 receptor binding, with titers 265-fold higher than natural convalescent patient COVID-19 responses; T cell and antibody responses were maintained despite 10-fold dose reduction in Spike antigen. Both cellular and humoral immune responses were preserved in aged mice. These advantages merit clinical translation to SARS-CoV-2 and other protein subunit vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , Lymph Nodes/immunology , SARS-CoV-2/immunology , Surface-Active Agents/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Female , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Protein Interaction Domains and Motifs/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , Vaccination/methods , Vaccines, Subunit/immunology
4.
Trials ; 21(1): 1014, 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-966433

ABSTRACT

OBJECTIVES: SARS-Cov-2 virus preferentially binds to the Angiotensin Converting Enzyme 2 (ACE2) on alveolar epithelial type II cells, initiating an inflammatory response and tissue damage which may impair surfactant synthesis contributing to alveolar collapse, worsening hypoxia and leading to respiratory failure. The objective of this study is to evaluate the feasibility, safety and efficacy of nebulised surfactant in COVID-19 adult patients requiring mechanical ventilation for respiratory failure. TRIAL DESIGN: This study is a dose-escalating randomized open-label clinical trial of 20 COVID-19 patients. PARTICIPANTS: This study is conducted in two centres: University Hospital Southampton and University College London Hospitals. Eligible participants are aged ≥18, hospitalised with COVID-19 (confirmed by PCR), who require endotracheal intubation and are enrolled within 24 hours of mechanical ventilation. For patients unable to consent, assent is obtained from a personal legal representative (PerLR) or professional legal representative (ProfLR) prior to enrolment. The following are exclusion criteria: imminent expected death within 24 hours; specific contraindications to surfactant administration (e.g. known allergy, pneumothorax, pulmonary hemorrhage); known or suspected pregnancy; stage 4 chronic kidney disease or requiring dialysis (i.e., eGFR < 30); liver failure (Child-Pugh Class C); anticipated transfer to another hospital, which is not a study site, within 72 hours; current or recent (within 1 month) participation in another study that, in the opinion of the investigator, would prevent enrollment for safety reasons; and declined consent or assent. INTERVENTION AND COMPARATOR: Intervention: The study is based on an investigational drug/device combination product. The surfactant product is Bovactant (Alveofact®), a natural animal derived (bovine) lung surfactant formulated as a lyophilized powder in 108 mg vials and reconstituted to 45 mg/mL in buffer supplied in a prefilled syringe. It is isolated by lung lavage and, by weight, is a mixture of: phospholipid (75% phosphatidylcholine, 13% phosphatidylglycerol, 3% phosphatidylethanolamine, 1% phosphatidylinositol and 1% sphingomyelin), 5% cholesterol, 1% lipid-soluble surfactant-associated proteins (SP-B and SP-C), very low levels of free fatty acid, lyso-phosphatidylcholine, water and 0.3% calcium. The Drug Delivery Device is the AeroFact-COVID™ nebulizer, an investigational device based on the Aerogen® Solo vibrating mesh nebulizer. The timing and escalation dosing plans for the surfactant are as follows. Cohort 1: Three patients will receive 10 vials (1080 mg) each of surfactant at dosing times of 0 hours, 8 hours and 24 hours. 2 controls with no placebo intervention. Cohort 2: Three patients will receive 10 vials (1080 mg) of surfactant at dosing times of 0 hours and 8 hours, and 30 vials (3240 mg) at a dosing time of 24 hours. 2 controls with no placebo intervention. Cohort 3: Three patients will receive 10 vials (1080 mg) of surfactant at a dosing time of 0 hours, and 30 vials (3240 mg) at dosing times of 8 hours and 24 hours. 2 controls with no placebo intervention. Cohort 4: Three patients will receive 30 (3240 mg) vials each of surfactant at dosing times of 0 hours, 8 hours and 24 hours. 2 controls. 2 controls with no placebo intervention. The trial steering committee, advised by the data monitoring committee, will review trial progression and dose escalation/maintenance/reduction after each cohort is completed (48-hour primary outcome timepoint reached) based on available feasibility, adverse event, safety and efficacy data. The trial will not be discontinued on the basis of lack of efficacy. The trial may be stopped early on the basis of safety or feasibility concerns. Comparator: No placebo intervention. All participants will receive usual standard of care in accordance with the local policies for mechanically ventilated patients and all other treatments will be left to the discretion of the attending physician. MAIN OUTCOMES: The co-primary outcome is the improvement in oxygenation (PaO2/FiO2 ratio) and pulmonary ventilation (Ventilation Index (VI), where VI = [RR x (PIP - PEEP) × PaCO2]/1000) at 48 hours after study initiation. The secondary outcomes include frequency and severity of adverse events (AEs), Adverse Device Effects (ADEs), Serious Adverse Events (SAEs) and Serious Adverse Device Events (SADEs), change in pulmonary compliance, change in positive end-expiratory pressure (PEEP) requirement of ventilatory support at 24 and 48 hours after study initiation, clinical improvement defined by time to one improvement point on the ordinal scale described in the WHO master protocol (2020) recorded while hospitalised, days of mechanical ventilation, mechanical ventilator free days (VFD) at day 21, length of intensive care unit stay, number of days hospitalised and mortality at day 28. Exploratory end points will include quantification of SARS-CoV-2 viral load from tracheal aspirates using PCR, surfactant dynamics (synthesis and turnover) and function (surface tension reduction) from deep tracheal aspirate samples (DTAS), surfactant phospholipid concentrations in plasma and DTAS, inflammatory markers (cellular and cytokine) in plasma and DTAS, and blood oxidative stress markers. RANDOMISATION: After informed assent, patients fulfilling inclusion criteria will be randomised to 3:2 for the treatment and control arms using an internet-based block randomization service (ALEA tool for clinical trials, FormsVision BV) in combination with electronic data collection. Randomisation will be done by the recruiting centre with a unique subject identifier specific to that centre. BLINDING (MASKING): This is an open-labelled unblinded study. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The total sample size is 20 COVID-19 mechanically ventilated patients (12 intervention; 8 control). TRIAL STATUS: Current protocol version is V2 dated 5th of June 2020. The recruitment is currently ongoing and started on the 14th of October 2020. The anticipated study completion date is November 2021. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04362059 (Registered 24 April 2020), EUDAMED number: CIV-GB-20-06-033328, EudraCT number: 2020-001886-35 (Registered 11 May 2020) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
COVID-19/drug therapy , Nebulizers and Vaporizers/standards , SARS-CoV-2/genetics , Surface-Active Agents/therapeutic use , Adult , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Feasibility Studies , Humans , Intensive Care Units/statistics & numerical data , London/epidemiology , Mortality/trends , Nebulizers and Vaporizers/statistics & numerical data , Respiration, Artificial/methods , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Safety , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry , Treatment Outcome , Ventilation/statistics & numerical data
5.
Trials ; 21(1): 919, 2020 Nov 11.
Article in English | MEDLINE | ID: covidwho-917940

ABSTRACT

OBJECTIVES: Assessing the effect of surfactant on clinical outcome in patients with COVID-19 under mechanical ventilation TRIAL DESIGN: Single centre, two arm, parallel group (1:1 allocation ratio), randomised superiority trial with blinded care and outcome assessment. PARTICIPANTS: Inclusion criteria: Adult COVID-19 patients admitted to the ICU in Modarres hospital, Tehran, Iran (age range of 18 to 99 years) with moderate to severe ARDS (based on definition of P/F ratio) requiring auxiliary respiratory devices (either intubation or face mask). EXCLUSION CRITERIA: ● Existence of a major underlying pulmonary disease in addition to COVID-19 ● Underlying congenital heart disease ● Patients needing extracorporeal membrane oxygenation (ECMO) ● ARDS primarily due to any other reason rather than COVID-19 ● The primary source of pulmonary involvement was bacterial pneumonia or any other etiology except for COVID-10 induced lung involvement ● Those who refused to continue the study (either the patient or their family) ● any patient had any sign of healing before entering the study leading to discharge from ICU in less than 12 hours INTERVENTION AND COMPARATOR: In the intervention group, the dose of the drug is a vial containing 4 ml, equivalent to 100 mg, which is prescribed for an adult weighing about 70 kg each time, and if the patient's weight is much lower or higher, it will be adjusted accordingly. Surfactant is prescribed inside the trachea in two doses, starting on the day of intubation with a second dose 6 hours later. The control group will receive the same volume of normal saline, based on weight, administered into the trachea with the same time schedule. MAIN OUTCOMES: 30 days mortality; patient mortality during stay in ICU up to 30 days; ICU length of stay up to 30 days; Time under mechanical ventilation up to 30 days. RANDOMISATION: After the participant enters the study, i.e. after the qualification of the patients in the trial is confirmed and their informed written consent is taken, we will use a simple randomisation method using a table of random numbers. In order to hide the random allocation process, a central randomisation approach will be used and the random sequence will be at the disposal of one of the researchers, excluding the principal investigator. BLINDING (MASKING): Participants, healthcare providers and the principal investigator assessing the outcomes will all be blinded to the group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 60 participants will be randomised in a 1:1 allocation ratio (30 patients allocated to the intervention group and 30 patients allocated to the control group). TRIAL STATUS: The protocol is Version 1.0, May 31, 2020. Recruitment began July 30, 2020, and is anticipated to be completed by October 30, 2020. TRIAL REGISTRATION: IRCT registration number: IRCT20091201002804N12 Registration date: 1st June 2020, 1399/03/12 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Pulmonary Surfactants , Respiration, Artificial/methods , Adult , Betacoronavirus , COVID-19 , Dose-Response Relationship, Drug , Double-Blind Method , Drug Dosage Calculations , Drug Monitoring/methods , Female , Humans , Male , Mortality , Pandemics , Pulmonary Surfactants/administration & dosage , Pulmonary Surfactants/adverse effects , Randomized Controlled Trials as Topic , SARS-CoV-2 , Surface-Active Agents/administration & dosage , Surface-Active Agents/adverse effects , Treatment Outcome
8.
Med Hypotheses ; 143: 110081, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-634173

ABSTRACT

Hand hygiene by washing with soap and water is recommended for the prevention of COVID-19 spread. Soaps and detergents are explained to act by damaging viral spike glycoproteins (peplomers) or by washing out the virus through entrapment in the micelles. Technically, soaps come under a functional category of molecules known as surfactants. Surfactants are widely used in pharmaceutical formulations as excipients. We wonder why surfactants are still not tried for prophylaxis or therapy against COVID-19? That too when many of them have proven antiviral properties. Moreover, lung surfactants have already shown benefits in respiratory viral infections. Therefore, we postulate that surfactant-based prophylaxis and therapy would be promising. We believe that our hypothesis would stimulate debate or new research exploring the possibility of surfactant-based prophylaxis and therapy against COVID-19. The success of a surfactant-based technique would save the world from any such pandemic in the future too.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Surface-Active Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/transmission , Humans , Micelles , Models, Biological , Mouthwashes/administration & dosage , Mouthwashes/pharmacology , Pneumonia, Viral/transmission , SARS-CoV-2 , Surface-Active Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL