Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
PLoS One ; 17(11): e0278089, 2022.
Article in English | MEDLINE | ID: covidwho-2140685

ABSTRACT

INTRODUCTION: Surgical tracheostomy (ST) and Percutaneous dilatational tracheostomy (PDT) are classified as high-risk aerosol-generating procedures and might lead to healthcare workers (HCW) infection. Albeit the COVID-19 strain slightly released since the vaccination era, preventing HCW from infection remains a major economical and medical concern. To date, there is no study monitoring particle emissions during ST and PDT in a clinical setting. The aim of this study was to monitor particle emissions during ST and PDT in a swine model. METHODS: A randomized animal study on swine model with induced acute respiratory distress syndrome (ARDS) was conducted. A dedicated room with controlled airflow was used to standardize the measurements obtained using an airborne optical particle counter. 6 ST and 6 PDT were performed in 12 pigs. Airborne particles (diameter of 0.5 to 3 µm) were continuously measured; video and audio data were recorded. The emission of particles was considered as significant if the number of particles increased beyond the normal variations of baseline particle contamination determinations in the room. These significant emissions were interpreted in the light of video and audio recordings. Duration of procedures, number of expiratory pauses, technical errors and adverse events were also analyzed. RESULTS: 10 procedures (5 ST and 5 PDT) were fully analyzable. There was no systematic aerosolization during procedures. However, in 1/5 ST and 4/5 PDT, minor leaks and some adverse events (cuff perforation in 1 ST and 1 PDT) occurred. Human factors were responsible for 1 aerosolization during 1 PDT procedure. ST duration was significantly shorter than PDT (8.6 ± 1.3 vs 15.6 ± 1.9 minutes) and required less expiratory pauses (1 vs 6.8 ± 1.2). CONCLUSIONS: COVID-19 adaptations allow preventing for major aerosol leaks for both ST and PDT, contributing to preserving healthcare workers during COVID-19 outbreak, but failed to achieve a perfectly airtight procedure. However, with COVID-19 adaptations, PDT required more expiratory pauses and more time than ST. Human factors and adverse events may lead to aerosolization and might be more frequent in PDT.


Subject(s)
COVID-19 , Tracheostomy , Humans , Swine , Animals , Tracheostomy/adverse effects , Tracheostomy/methods , Dilatation/methods , Vascular Surgical Procedures
2.
J Virol ; 96(18): e0096222, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2137410

ABSTRACT

Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/ß-catenin pathway by upregulating the accumulation and nuclear translocation of ß-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.


Subject(s)
Stem Cells , Transmissible gastroenteritis virus , Animals , Cyclin D1/metabolism , Interferons/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/virology , Matrix Metalloproteinase 7 , Stem Cells/cytology , Stem Cells/virology , Swine , Transmissible gastroenteritis virus/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
3.
Vet Microbiol ; 275: 109599, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2132637

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging pathogen that causes severe economic loss in the pig industry. The host's innate immune system is the first line of defense on virus invasion of the small intestinal epithelial cells. Chemokines, as a part of the innate immune system, play an important role in host immunity against infection, however, and their expression and chemotactic effect on key immune cells in PEDV infection remains unclear. In this study, cDNA microarray was firstly performed to analyzed ileum tissue of piglets on the third day after PEDV infection. The differentially expressed genes mainly involved in multiple biological processes, chemokine signaling pathway and cytokine receptor interaction signaling pathway had the highest enrichment according to GO and KEGG enrichment analysis. The expression levels of chemokines MCP-1, MIP-1ß, IL-8, CXCL9, CXCL10 and CXCL13 in ileum of PEDV- infected piglets were significantly higher than those in the control group. The expression of chemokines in vivo experiment was further verified by RT-qPCR and ELISA using PEDV-infected IPEC-J2 cells. The results showed that the PEDV-infected IPEC-J2 cells had significantly induced protein expression of MCP-1, MIP-1ß, IL-8, CXCL9, CXCL-10 and CXCL13. These results indicated that the changes of chemokines expressed in the ileum of piglets (in vivo) were consistent with those in IPEC-J2 cells (in vitro) after PEDV infection. Finally, the role of chemokines in immune cell migration during PEDV infection was illustrated by siRNA-mediated knock down method and the co-culture model of IPEC-J2 cells with peripheral blood leukocyte cells (PBLCs). The FACS analysis showed that MCP-1 induced by PEDV infection played a chemotactic effect on CD14+ cells, CXCL9 on CD3+CD4-CD8-γδ T, CD3+CD4-CD8+ Tc, CD3+CD4+CD8- Th and CD3+CD4+CD8+ Tm subsets, and CXCL13 on CD19+ B cells. Collectively, our findings first indicate that PEDV-induced chemokines MCP-1, CXCL-9 and CXCL-13 attracted CD14+ cells, T cells and B cells, respectively. These results provide a theoretical basis for studying the mechanism of anti-PEDV infection in piglets.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Monocytes , Chemokine CCL4/pharmacology , Interleukin-8/genetics , Coronavirus Infections/veterinary , Cell Line
4.
Vet Microbiol ; 275: 109596, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2132636

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious and virulent intestinal infectious disease characterized by diarrhea, vomiting and dehydration. Although PEDV-induced apoptosis has been characterized in vitro and vivo, the functional proteins related to this event and the mechanism still need further research. Here, we firstly demonstrated that PEDV epidemic strain JS2013 could trigger apoptosis in a dose- and time-dependent manner. Then, PEDV 3CLpro was further identified as a crucial inducer of PEDV-triggered apoptosis. In addition, using site-directed mutagenesis to disrupt the protease activity of 3CLpro by His41 and Cys144 mutations, we found that 3CLpro-induced apoptosis and mitochondrial damage significantly reduced, suggesting that the protease activity of 3CLpro was essential for apoptosis and mitochondrial damage. Furthermore, PEDV 3CLpro could synergistically promote MAVS-mediated apoptosis and MAVS was involved in the signaling pathway of 3CLpro-induced apoptosis, but no direct interaction between PEDV 3CLpro and MAVS was detected by immunoprecipitation assays. Our findings provide important insights into the role of 3CLpro in the pathogenicity of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Membrane Potential, Mitochondrial , Apoptosis , Signal Transduction , Peptide Hydrolases/metabolism , Diarrhea/veterinary , Coronavirus Infections/veterinary
5.
Viruses ; 14(11)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2123861

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Virulence , Host Microbial Interactions , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Vaccines, Attenuated
6.
Front Immunol ; 13: 1016982, 2022.
Article in English | MEDLINE | ID: covidwho-2123416

ABSTRACT

Type I and III Interferons (IFNs) are the initial antiviral cytokines produced in response to virus infection. These IFNs in turn bind to their respective receptors, trigger JAK-STAT signaling and induce the expression of IFN-stimulated genes (ISGs) to engage antiviral functions. Unlike the receptor for type I IFNs, which is broadly expressed, the expression of the type III IFN receptor is mainly confined to epithelial cells that line mucosal surfaces. Accumulating evidence has shown that type III IFNs may play a unique role in protecting mucosal surfaces against viral challenges. The porcine alphaherpesvirus pseudorabies virus (PRV) causes huge economic losses to the pig industry worldwide. PRV first replicates in the respiratory tract, followed by spread via neurons and via lymph and blood vessels to the central nervous system and internal organs, e.g. the kidney, lungs and intestinal tract. In this study, we investigate whether PRV triggers the expression of type I and III IFNs and whether these IFNs exert antiviral activity against PRV in different porcine epithelial cells: porcine kidney epithelial cells (PK-15), primary respiratory epithelial cells (PoREC) and intestinal porcine epithelial cells (IPEC-J2). We show that PRV triggers a multiplicity of infection-dependent type I IFN response and a prominent III IFN response in PK-15 cells, a multiplicity of infection-dependent expression of both types of IFN in IPEC-J2 cells and virtually no expression of either IFN in PoREC. Pretreatment of the different cell types with equal amounts of porcine IFN-λ3 (type III IFN) or porcine IFN-α (type I IFN) showed that IFN-α, but not IFN-λ3, suppressed PRV replication and spread in PK-15 cells, whereas the opposite was observed in IPEC-J2 cells and both types of IFN showed anti-PRV activity in PoREC cells, although the antiviral activity of IFN-α was more potent than that of IFN-λ3 in the latter cell type. In conclusion, the current data show that PRV-induced type I and III IFN responses and their antiviral activity depend to a large extent on the epithelial cell type used, and for the first time show that type III IFN displays antiviral activity against PRV in epithelial cells from the respiratory and particularly the intestinal tract.


Subject(s)
Herpesvirus 1, Suid , Swine , Animals , Antiviral Agents/pharmacology , Epithelial Cells , Interferon-alpha
7.
Sci Rep ; 12(1): 19443, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2119409

ABSTRACT

Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV) infect the small intestine and cause swine enteric coronavirus disease. The mucosal innate immune system is the first line of defense against viral infection. The modulatory effect of PDCoV and PEDV coinfection on antiviral signaling cascades of the intestinal mucosa has not been reported. Here, we investigate the gene expression levels of pattern recognition receptors, downstream inflammatory signaling pathway molecules, and associated cytokines on the intestinal mucosa of neonatal piglets either infected with a single- or co-infected with PDCoV and PEDV using real-time PCR. The results demonstrate that single-PEDV regulates the noncanonical NF-κB signaling pathway through RIG-I regulation. In contrast, single-PDCoV and PDCoV/PEDV coinfection regulate proinflammatory and regulatory cytokines through TRAF6-mediated canonical NF-κB and IRF7 signaling pathways through TLRs. Although PDCoV/PEDV coinfection demonstrated an earlier modulatory effect in these signaling pathways, the regulation of proinflammatory and regulatory cytokines was observed simultaneously during single viral infection. These results suggested that PDCoV/PEDV coinfection may have synergistic effects that lead to enhanced viral evasion of the mucosal innate immune response.


Subject(s)
Coinfection , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , NF-kappa B , TNF Receptor-Associated Factor 6/genetics , Signal Transduction , Cytokines , Diarrhea
8.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2118120

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine , Animals , Chlorocebus aethiops , Porcine epidemic diarrhea virus/genetics , Adsorption , Virus Replication , Vero Cells , Proteins/pharmacology
9.
ACS Appl Mater Interfaces ; 14(46): 52334-52346, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2117028

ABSTRACT

The high antibacterial and antiviral performance of synthesized copper(I) oxide (Cu2O) incorporated in zeolite nanoparticles (Cu-Z) was determined. Various Cu contents (1-9 wt %) in solutions were loaded in the zeolite matrix under neutral conditions at room temperature. All synthesized Cu-Z nanoparticles showed high selectivity of the cuprous oxide, as confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. An advantage of the prepared Cu-Z over the pristine Cu2O nanoparticles was its high thermal stability. The 7 and 9 wt % Cu contents (07Cu-Z and 09Cu-Z) exhibited the best activities to deactivate Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The film coated with 07Cu-Z nanoparticles also had high antiviral activities against porcine coronavirus (porcine epidemic diarrhea virus, PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, the 07Cu-Z-coated film could reduce 99.93% of PEDV and 99.94% of SARS-CoV-2 viruses in 5 min of contact time, which were higher efficacies and faster than those of any previously reported works. The anti-SARS-CoV-2 virus film was coated on a low-cost PET or PVC film. A very small amount of cuprous oxide in zeolite was used to fabricate the antivirus film; therefore, the film was more transparent (79.4% transparency) than the cuprous oxide film or other commercial products. The toxicity of 07Cu-Z nanoparticles was determined by a toxicity test on zebrafish embryo and a skin irritation test to reconstruct a human epidermis (RhE) model. It was found that the impact on the aquatic environment and human skin was lower than that of the pristine Cu2O.


Subject(s)
COVID-19 , Nanoparticles , Zeolites , Humans , Swine , Animals , Zeolites/chemistry , SARS-CoV-2 , Oxides , Microbial Sensitivity Tests , Zebrafish , Copper/pharmacology , Copper/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria , Antiviral Agents/pharmacology
10.
BMC Vet Res ; 18(1): 401, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2115817

ABSTRACT

BACKGROUND: African swine fever (ASF) has been present in Lithuania since 2014. The disease affects mainly the wild boar population. Thus, hunters play a key role in the performance of disease surveillance and control measures. We used participatory methods to gain insight into the knowledge of hunters and to include their perceptions in the design and the implementation of surveillance and control measures to increase their effectiveness. RESULTS: The willingness and the interest of hunters to participate was high, but only eight focus group meetings with 33 hunters could be held due to the COVID-19 pandemic. The overall knowledge of Lithuanian hunters regarding ASF, investigated by semi-structured interviews, was sufficient to understand their part in ASF control and surveillance. However, their knowledge did not necessarily lead to an increased acceptance of some ASF control measures, like the targeted hunting of female wild boar. Participating hunters showed a good understanding of the processes of the surveillance system. Their trust in the performance within this system was highest towards the hunters themselves, thus emphasizing the importance of acknowledging their role in the system. Hunters refused measures including the reduction of hunting activities. They feared a complete elimination of the wild boar population, which in turn demonstrates the necessity to increase professional information exchange. CONCLUSIONS: The perceptions of Lithuanian hunters regarding ASF surveillance and control in wild boar resembled those obtained in neighboring countries. It is imperative to communicate the results with decision-makers, to consider the views of hunters, when designing or adapting measures to control ASF in wild boar and to communicate with hunters on these measures and their justification.


Subject(s)
African Swine Fever Virus , African Swine Fever , COVID-19 , Swine Diseases , Female , Swine , Animals , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Lithuania/epidemiology , Pandemics , COVID-19/veterinary , Sus scrofa , Swine Diseases/epidemiology
11.
Front Immunol ; 13: 1025884, 2022.
Article in English | MEDLINE | ID: covidwho-2109769

ABSTRACT

Since the first outbreak in the 19th century influenza virus has remained emergent owing to the huge pandemic potential. Only the pandemic of 1918 caused more deaths than any war in world history. Although two types of influenza- A (IAV) and B (IBV) cause epidemics annually, influenza A deserves more attention as its nature is much wilier. IAVs have a large animal reservoir and cause the infection manifestation not only in the human population but in poultry and domestic pigs as well. This many-sided characteristic of IAV along with the segmented genome gives rise to the antigenic drift and shift that allows evolving the new strains and new subtypes, respectively. As a result, the immune system of the body is unable to recognize them. Importantly, several highly pathogenic avian IAVs have already caused sporadic human infections with a high fatality rate (~60%). The current review discusses the promising strategy of using a potentially universal IAV mRNA vaccine based on conserved elements for humans, poultry, and pigs. This will better aid in averting the outbreaks in different susceptible species, thus, reduce the adverse impact on agriculture, and economics, and ultimately, prevent deadly pandemics in the human population.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Animals , Swine , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Poultry , RNA, Messenger
12.
Front Immunol ; 13: 960709, 2022.
Article in English | MEDLINE | ID: covidwho-2109764

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious disease that affects the global pig industry. To understand mechanisms of susceptibility/resistance to PRRSV, this study profiled the time-serial white blood cells transcriptomic and serum metabolomic responses to PRRSV in piglets from a crossbred population of PRRSV-resistant Tongcheng pigs and PRRSV-susceptible Large White pigs. Gene set enrichment analysis (GSEA) illustrated that PRRSV infection up-regulated the expression levels of marker genes of dendritic cells, monocytes and neutrophils and inflammatory response, but down-regulated T cells, B cells and NK cells markers. CIBERSORT analysis confirmed the higher T cells proportion in resistant pigs during PRRSV infection. Resistant pigs showed a significantly higher level of T cell activation and lower expression levels of monocyte surface signatures post infection than susceptible pigs, corresponding to more severe suppression of T cell immunity and inflammatory response in susceptible pigs. Differentially expressed genes between resistant/susceptible pigs during the course of infection were significantly enriched in oxidative stress, innate immunity and humoral immunity, cell cycle, biotic stimulated cellular response, wounding response and behavior related pathways. Fourteen of these genes were distributed in 5 different QTL regions associated with PRRSV-related traits. Chemokine CXCL10 levels post PRRSV infection were differentially expressed between resistant pigs and susceptible pigs and can be a promising marker for susceptibility/resistance to PRRSV. Furthermore, the metabolomics dataset indicated differences in amino acid pathways and lipid metabolism between pre-infection/post-infection and resistant/susceptible pigs. The majority of metabolites levels were also down-regulated after PRRSV infection and were significantly positively correlated to the expression levels of marker genes in adaptive immune response. The integration of transcriptome and metabolome revealed concerted molecular events triggered by the infection, notably involving inflammatory response, adaptive immunity and G protein-coupled receptor downstream signaling. This study has increased our knowledge of the immune response differences induced by PRRSV infection and susceptibility differences at the transcriptomic and metabolomic levels, providing the basis for the PRRSV resistance mechanism and effective PRRS control.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Transcriptome , Immunity, Humoral , Adaptive Immunity/genetics
13.
Front Cell Infect Microbiol ; 12: 976137, 2022.
Article in English | MEDLINE | ID: covidwho-2109734

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute watery diarrhea and vomiting in unweaned piglets. Infections result in high mortality and serious economic losses to the swine industry. PEDV attenuated vaccine does not completely protect against all mutant wild-type strains, and PEDV infection can periodically occur. A sensitive, accurate, and simple detection method for PEDV is needed to reduce the occurrence of the disease. In this study, the CRISPR/Cas13a system was combined with recombinase aided amplification to develop a rapid diagnostic method to distinguish PEDV wild-type strains from attenuated vaccine strains. The method is based on isothermal detection at 37°C. The results are used for visual readout. The assay had high sensitivity and specificity, with a detection limit of 101 copies/µL for the gene of interest, and no cross-reactivity with other pathogens. The Cas13a detection worked well with clinical samples. This visual, sensitive, and specific nucleic acid detection method based on CRISPR/Cas13a should be a powerful tool for detecting PEDV.


Subject(s)
Coronavirus Infections , Nucleic Acids , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Coronavirus Infections/veterinary , Diarrhea , Porcine epidemic diarrhea virus/genetics , Recombinases , Sensitivity and Specificity , Swine , Swine Diseases/genetics , Vaccines, Attenuated/genetics
14.
BMC Vet Res ; 18(1): 392, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108779

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, has become the major causative agent of acute gastroenteritis in piglets since 2010 in China. RESULTS: In the current study, 91 complete spike (S) gene sequences were obtained from PEDV positive samples collected from 17 provinces in China from March 2020 to March 2021. A phylogenetic analysis showed that 92.3% (84 out of 91) of the identified strains belonged to GII subtype, while 7.7% (7 out of 91) were categorized as S-INDEL like strains and grouped within GI-c clade. Based on a recombination analysis, six of S-INDEL like strains were recombinant strains originated from S-INDEL strain FR/001/2014 and virulent strain AJ1102. In addition, PEDV variant strains (CH/GDMM/202012, CH/GXDX/202010 et al) carrying novel insertions (360QGRKS364 and 1278VDVF1281) in the S protein were observed. Furthermore, the deduced amino acid sequences for the S protein showed that multiple amino acid substitutions in the antigenic epitopes in comparison with the vaccine strains. CONCLUSIONS: In conclusion, these data provide novel molecular evidence on the epidemiology and molecular diversity of PEDV in 2020-2021. This information may help design a strategy for controlling and preventing the prevalence of PEDV variant strains in China.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Phylogeny , Swine Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Amino Acid Sequence , China/epidemiology , Spike Glycoprotein, Coronavirus/genetics
15.
J Virol ; 96(22): e0147322, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2108213

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is member of the family Coronaviridae and mainly causes acute diarrhea. TGEV infection is characterized by vomiting, watery diarrhea, and severe dehydration, resulting in high mortality rates in neonatal piglets. TGEV infection symptoms are related to an imbalance of sodium absorption in small intestinal epithelial cells; however, the etiology of sodium imbalance diarrhea caused by TGEV remains unclear. In this study, we performed transcriptomic analysis of intestinal tissues from infected and healthy piglets and observed that the expression of NHE3, encoding Na+/H+ exchanger 3 (NHE3), the main exchanger of electroneutral sodium in intestinal epithelial cells, was significantly reduced upon TGEV infection. We also showed that specific inhibition of intestinal NHE3 activity could lead to the development of diarrhea in piglets. Furthermore, we revealed an interaction between TGEV N protein and NHE3 near the nucleus. The binding of TGEV N to NHE3 directly affected the expression and activity of NHE3 on the cell surface and affected cellular electrolyte absorption, leading to diarrhea. Molecular docking and computer-aided screening techniques were used to screen for the blocker of the interaction between TGEV N and NHE3, which identified irinotecan. We then demonstrated that irinotecan was effective in relieving TGEV-induced diarrhea in piglets. These findings provide new insights into the mechanism of TGEV-induced sodium imbalance diarrhea and could lead to the design of novel antiviral strategies against TGEV. IMPORTANCE A variety of coronaviruses have been found to cause severe diarrhea in hosts, including TGEV; however, the pathogenic mechanism is not clear. Therefore, prompt determination of the mechanism and identification of efficient therapeutic agents are required, both for public health reasons and for economic development. In this study, we demonstrated that NHE3 is the major expressed protein of NHEs in the intestine, and its expression decreased by nearly 70% after TGEV infection. Also, specific inhibition of intestinal NHE3 resulted in severe diarrhea in piglets. This demonstrated that NHE3 plays an important role in TGEV-induced diarrhea. In addition, we found that TGEV N directly regulates NHE3 expression and activity through protein-protein interaction, which is essential to promote diarrhea. Molecular docking and other techniques demonstrated that irinotecan could block the interaction and diarrhea caused by TGEV. Thus, our results provide a basis for the development of novel therapeutic agents against TGEV and guidance for the development of drugs for other diarrhea-causing coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/physiology , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/metabolism , Nucleocapsid Proteins/metabolism , Irinotecan , Molecular Docking Simulation , Diarrhea/veterinary , Sodium-Hydrogen Exchangers/metabolism , Coronavirus/metabolism , Sodium/metabolism
16.
ACS Nano ; 16(7): 10566-10580, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-2106345

ABSTRACT

Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.


Subject(s)
COVID-19 , Hemostatics , Nanoparticles , Thrombosis , Swine , Animals , Cytokines , Polyesters , Disease Models, Animal , Nanoparticles/therapeutic use , Thrombosis/drug therapy , Polyethylene Glycols
17.
Water Res ; 227: 119342, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2106149

ABSTRACT

Glutaraldehyde and didecyldimethylammonium bromide (GD) is a disinfectant widely used to prevent African swine fever (ASF) in livestock farms. However, the effect of residual GD on the activated sludge microbial ecology of receiving wastewater treatment plants (WWTPs) remains largely unknown. In this study, seven simulated systems were established to research the effects of GD on WWTPs and reveal the underlying mechanisms of microecological responses to GD at different concentrations. Both the nitrogen and carbon removal rates decreased with increasing GD concentrations, and nitrogen metabolism was inhibited more obviously, but the inhibition weakened with increasing stress duration. Microorganisms activated their SoxRS systems to promote ATP synthesis and electron transfer to support the hydrolysis and efflux of GD by producing a small number of ROS when exposed to GD at less than 1 mg/L. The overproduction of ROS led to a decrease of antioxidant and nitrogen removal enzyme activities, and upregulation of the porin gene increased the risk of GD entering the intracellular space upon exposure to GD at concentrations higher than 1 mg/L. Some denitrifiers survived via resistance and their basic capabilities of sugar metabolism and nitrogen assimilation. Notably, low concentrations of disinfectants could promote vertical and horizontal transfer of multiple resistance genes, especially aminoglycosides, among microorganisms, which might increase not only the adaptation capability of denitrifiers but also the risk to ecological systems. Therefore, the risks of disinfectants targeting ASF on ecology and health as well as the effects of disinfectant residuals from the COVID-19 epidemic should receive more attention.


Subject(s)
African Swine Fever , COVID-19 , Disinfectants , Water Purification , Swine , Animals , Sewage , Disinfectants/pharmacology , Glutaral/pharmacology , Livestock , Reactive Oxygen Species , Nitrogen
18.
J Virol ; 96(22): e0155522, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2097923

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , Heterogeneous-Nuclear Ribonucleoprotein K , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Antiviral Agents , Chlorocebus aethiops , Coronavirus Infections/veterinary , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Interferons , Myeloid Differentiation Factor 88 , Nucleocapsid Proteins/physiology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/virology , Ubiquitin-Protein Ligases , Vero Cells , Interferon Type I/immunology
19.
Methods ; 203: 431-446, 2022 07.
Article in English | MEDLINE | ID: covidwho-2096167

ABSTRACT

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas3, Cas9, Cas12, Cas13, Cas14 etc.) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, lateral flow assay detection and other. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, CARMEN or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing COVID-19) and outbreaks of zoonotic viruses (African Swine Fever Virus etc.) urgently need the developing and distribution of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


Subject(s)
African Swine Fever Virus , COVID-19 , Communicable Diseases , Animals , COVID-19/diagnosis , COVID-19/epidemiology , CRISPR-Cas Systems/genetics , Communicable Diseases/diagnosis , Communicable Diseases/genetics , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , Swine
20.
Viruses ; 14(10)2022 09 28.
Article in English | MEDLINE | ID: covidwho-2090352

ABSTRACT

This study characterized the susceptibility and dynamic of porcine deltacoronavirus infection in grower pigs under experimental conditions using a combination of syndromic and laboratory assessments. Seven-week-old conventional pigs (n = 24) were randomly distributed into PDCoV- (n = 12) and mock-inoculated (n = 12) groups. Serum was collected at -7, 0, 3, 7, 10, 14, 17, 21, 28, 35, and 42 days post-inoculation (DPI) to evaluate viremia (RT-qPCR) and antibody response (S1-based ELISA). Viral shedding and potential infectivity were determined using pen-based oral fluids and feces collected every other day between DPI 0 and 42. Pigs showed no clinical signs or viremia throughout the study. Active virus shedding was detected in feces (6-22 DPI) and oral fluids (2-30 DPI), peaking at DPI 10. IgG was first detected at DPI 10, being statistically significant after DPI 14 and increasing thereafter, coinciding with the progressive resolution of the infection. Likewise, a significant increase in proinflammatory IL-12 was detected between DPI 10 and 21 in PDCoV-inoculated pigs, which could enhance innate resistance to PDCoV infection. This study demonstrated that active surveillance based on systematic sampling and laboratory testing combining molecular and serological tools is critical for the accurate detection of subclinical circulation of PDCoV in pigs after weaning.


Subject(s)
Coronavirus Infections , Swine Diseases , Animals , Asymptomatic Infections , Immunoglobulin G , Interleukin-12 , Swine , Viremia/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL