Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Commun ; 12(1): 7222, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565718

ABSTRACT

Multi-system Inflammatory Syndrome in Children (MIS-C) is a major complication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in pediatric patients. Weeks after an often mild or asymptomatic initial infection with SARS-CoV-2 children may present with a severe shock-like picture and marked inflammation. Children with MIS-C present with varying degrees of cardiovascular and hyperinflammatory symptoms. Here we perform a comprehensive analysis of the plasma proteome of more than 1400 proteins in children with SARS-CoV-2. We hypothesize that the proteome would reflect heterogeneity in hyperinflammation and vascular injury, and further identify pathogenic mediators of disease. We show that protein signatures demonstrate overlap between MIS-C, and the inflammatory syndromes macrophage activation syndrome (MAS) and thrombotic microangiopathy (TMA). We demonstrate that PLA2G2A is an important marker of MIS-C that associates with TMA. We find that IFNγ responses are dysregulated in MIS-C patients, and that IFNγ levels delineate clinical heterogeneity.


Subject(s)
COVID-19/complications , Endothelium, Vascular/physiopathology , Interferon-gamma/immunology , Proteome , Systemic Inflammatory Response Syndrome/pathology , Biomarkers , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Chemokine CXCL9 , Child , Group II Phospholipases A2 , Humans , Inflammation , Interleukin-10 , Proteomics , Systemic Inflammatory Response Syndrome/metabolism , Vascular Diseases
2.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470549

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) manifests as a severe and uncontrolled inflammatory response with multiorgan involvement, occurring weeks after SARS-CoV-2 infection. Here, we utilized proteomics, RNA sequencing, autoantibody arrays, and B cell receptor (BCR) repertoire analysis to characterize MIS-C immunopathogenesis and identify factors contributing to severe manifestations and intensive care unit admission. Inflammation markers, humoral immune responses, neutrophil activation, and complement and coagulation pathways were highly enriched in MIS-C patient serum, with a more hyperinflammatory profile in severe than in mild MIS-C cases. We identified a strong autoimmune signature in MIS-C, with autoantibodies targeted to both ubiquitously expressed and tissue-specific antigens, suggesting autoantigen release and excessive antigenic drive may result from systemic tissue damage. We further identified a cluster of patients with enhanced neutrophil responses as well as high anti-Spike IgG and autoantibody titers. BCR sequencing of these patients identified a strong imprint of antigenic drive with substantial BCR sequence connectivity and usage of autoimmunity-associated immunoglobulin heavy chain variable region (IGHV) genes. This cluster was linked to a TRBV11-2 expanded T cell receptor (TCR) repertoire, consistent with previous studies indicating a superantigen-driven pathogenic process. Overall, we identify a combination of pathogenic pathways that culminate in MIS-C and may inform treatment.


Subject(s)
Autoimmunity , COVID-19/complications , Systemic Inflammatory Response Syndrome/immunology , Adaptive Immunity , Adolescent , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokine Release Syndrome/immunology , Female , Humans , Infant , Inflammation/immunology , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/metabolism , Neutrophil Activation , Proteomics , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Severity of Illness Index , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/metabolism
3.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Article in English | MEDLINE | ID: covidwho-1437673

ABSTRACT

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Subject(s)
COVID-19 , Colitis, Ulcerative , Disulfiram/pharmacokinetics , Lactoferrin , Systemic Inflammatory Response Syndrome , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Biomimetic Materials/pharmacology , COVID-19/drug therapy , COVID-19/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Disease Models, Animal , Disulfiram/pharmacology , Drug Carriers/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Lactoferrin/metabolism , Lactoferrin/pharmacology , Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Nanoparticles/therapeutic use , Pyroptosis/drug effects , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , Treatment Outcome
4.
J Infect Dis ; 224(4): 606-615, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1369104

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a severe clinical phenotype of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that remains poorly understood. METHODS: Hospitalized children <18 years of age with suspected coronavirus disease 2019 (COVID-19) (N = 53) were recruited into a prospective cohort study; 32 had confirmed COVID-19, with 16 meeting the US Centers for Disease Control criteria for MIS-C. Differences in nasopharyngeal viral ribonucleic acid (RNA) levels, SARS-CoV-2 seropositivity, and cytokine/chemokine profiles were examined, including after adjustments for age and sex. RESULTS: The median ages for those with and without MIS-C were 8.7 years (interquartile range [IQR], 5.5-13.9) and 2.2 years (IQR, 1.1-10.5), respectively (P = .18), and nasopharyngeal levels of SARS-CoV-2 RNA did not differ significantly between the 2 groups (median 63 848.25 copies/mL versus 307.1 copies/mL, P = .66); 75% of those with MIS-C were antibody positive compared with 44% without (P = .026). Levels of 14 of 37 cytokines/chemokines (interleukin [IL]-1RA, IL-2RA, IL-6, IL-8, tumor necrosis factor-α, IL-10, IL-15, IL-18, monocyte chemoattractant protein [MCP]-1, IP-10, macrophage-inflammatory protein [MIP]-1α, MCP-2, MIP-1ß, eotaxin) were significantly higher in children with MIS-C compared to those without, irrespective of age or sex (false discovery rate <0.05; P < .05). CONCLUSIONS: The distinct pattern of heightened cytokine/chemokine dysregulation observed with MIS-C, compared with acute COVID-19, occurs across the pediatric age spectrum and with similar levels of nasopharyngeal SARS-CoV-2 RNA.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Chemokines/metabolism , Cytokines/metabolism , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/virology , Adolescent , Age Factors , Antibodies, Viral/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Host-Pathogen Interactions , Humans , Male , RNA, Viral , Serologic Tests , Severity of Illness Index , Sex Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Viral Load
5.
J Allergy Clin Immunol ; 148(3): 732-738.e1, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293879

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a pediatric complication of severe acute respiratory syndrome coronavirus 2 infection that is characterized by multiorgan inflammation and frequently by cardiovascular dysfunction. It occurs predominantly in otherwise healthy children. We previously reported haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1), a negative regulator of type I and II interferons, as a genetic risk factor for MIS-C. OBJECTIVES: We aimed to identify additional genetic mechanisms underlying susceptibility to severe acute respiratory syndrome coronavirus 2-associated MIS-C. METHODS: In a single-center, prospective cohort study, whole exome sequencing was performed on patients with MIS-C. The impact of candidate variants was tested by using patients' PBMCs obtained at least 7 months after recovery. RESULTS: We enrolled 18 patients with MIS-C (median age = 8 years; interquartile range = 5-12.25 years), of whom 89% had no conditions other than obesity. In 2 boys with no significant infection history, we identified and validated hemizygous deleterious defects in XIAP, encoding X-linked inhibitor of apoptosis, and CYBB, encoding cytochrome b-245, beta subunit. Including the previously reported SOCS1 haploinsufficiency, a genetic diagnosis was identified in 3 of 18 patients (17%). In contrast to patients with mild COVID-19, patients with defects in SOCS1, XIAP, or CYBB exhibit an inflammatory immune cell transcriptome with enrichment of differentially expressed genes in pathways downstream of IL-18, oncostatin M, and nuclear factor κB, even after recovery. CONCLUSIONS: Although inflammatory disorders are rare in the general population, our cohort of patients with MIS-C was enriched for monogenic susceptibility to inflammation. Our results support the use of next-generation sequencing in previously healthy children who develop MIS-C.


Subject(s)
COVID-19/etiology , COVID-19/metabolism , Disease Susceptibility , Genetic Predisposition to Disease , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/metabolism , Biomarkers , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Child , Child, Preschool , Cytokines/metabolism , Female , Host-Pathogen Interactions/immunology , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/diagnosis
6.
Mol Cell Proteomics ; 20: 100113, 2021.
Article in English | MEDLINE | ID: covidwho-1275575

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) can result in pneumonia and acute respiratory failure. Accumulation of mucus in the airways is a hallmark of the disease and can result in hypoxemia. Here, we show that quantitative proteome analysis of the sputum from severe patients with COVID-19 reveal high levels of neutrophil extracellular trap (NET) components, which was confirmed by microscopy. Extracellular DNA from excessive NET formation can increase sputum viscosity and lead to acute respiratory distress syndrome. Recombinant human DNase (Pulmozyme; Roche) has been shown to be beneficial in reducing sputum viscosity and improve lung function. We treated five patients pwith COVID-19 resenting acute symptoms with clinically approved aerosolized Pulmozyme. No adverse reactions to the drug were seen, and improved oxygen saturation and recovery in all severely ill patients with COVID-19 was observed after therapy. Immunofluorescence and proteome analysis of sputum and blood plasma samples after treatment revealed a marked reduction of NETs and a set of statistically significant proteome changes that indicate reduction of hemorrhage, plasma leakage and inflammation in the airways, and reduced systemic inflammatory state in the blood plasma of patients. Taken together, the results indicate that NETs contribute to acute respiratory failure in COVID-19 and that degrading NETs may reduce dependency on external high-flow oxygen therapy in patients. Targeting NETs using recombinant human DNase may have significant therapeutic implications in COVID-19 disease and warrants further studies.


Subject(s)
COVID-19/drug therapy , Deoxyribonuclease I/pharmacology , Extracellular Traps/metabolism , Proteome/analysis , Aged , Blood Proteins/analysis , COVID-19/metabolism , COVID-19/therapy , Female , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Recombinant Proteins/pharmacology , Severity of Illness Index , Sputum/drug effects , Sputum/metabolism , Sputum/virology , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/virology
7.
J Infect Dis ; 224(4): 606-615, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1243488

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a severe clinical phenotype of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that remains poorly understood. METHODS: Hospitalized children <18 years of age with suspected coronavirus disease 2019 (COVID-19) (N = 53) were recruited into a prospective cohort study; 32 had confirmed COVID-19, with 16 meeting the US Centers for Disease Control criteria for MIS-C. Differences in nasopharyngeal viral ribonucleic acid (RNA) levels, SARS-CoV-2 seropositivity, and cytokine/chemokine profiles were examined, including after adjustments for age and sex. RESULTS: The median ages for those with and without MIS-C were 8.7 years (interquartile range [IQR], 5.5-13.9) and 2.2 years (IQR, 1.1-10.5), respectively (P = .18), and nasopharyngeal levels of SARS-CoV-2 RNA did not differ significantly between the 2 groups (median 63 848.25 copies/mL versus 307.1 copies/mL, P = .66); 75% of those with MIS-C were antibody positive compared with 44% without (P = .026). Levels of 14 of 37 cytokines/chemokines (interleukin [IL]-1RA, IL-2RA, IL-6, IL-8, tumor necrosis factor-α, IL-10, IL-15, IL-18, monocyte chemoattractant protein [MCP]-1, IP-10, macrophage-inflammatory protein [MIP]-1α, MCP-2, MIP-1ß, eotaxin) were significantly higher in children with MIS-C compared to those without, irrespective of age or sex (false discovery rate <0.05; P < .05). CONCLUSIONS: The distinct pattern of heightened cytokine/chemokine dysregulation observed with MIS-C, compared with acute COVID-19, occurs across the pediatric age spectrum and with similar levels of nasopharyngeal SARS-CoV-2 RNA.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Chemokines/metabolism , Cytokines/metabolism , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/virology , Adolescent , Age Factors , Antibodies, Viral/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Host-Pathogen Interactions , Humans , Male , RNA, Viral , Serologic Tests , Severity of Illness Index , Sex Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Viral Load
9.
Pediatr Infect Dis J ; 40(5): e173-e178, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1180646

ABSTRACT

BACKGROUND: Acute myocarditis (AM) is defined as inflammation of the myocardium. The aim of our study is a comparative analysis of the differences between AM related and unrelated to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: The retrospective study included children with AM treated from January 2018 to November 2020. RESULTS: The study included 24 patients; 7 of 24 had AM related to SARS-CoV-2 and they were older than 7. They were more likely to have abdominal pain (P = 0.014), headache (P = 0.003), cutaneous rash (P = 0.003), and conjunctivitis (P = 0.003), while fulminant myocarditis was commonly registered in AM unrelated to SARS-CoV-2 (P = 0.04). A multisystem inflammatory syndrome in children associated with COVID-19 was diagnosed in six adolescents. Patients with AM related SARS-CoV-2 had lower serum cardiac troponin I (cTnI) (P = 0.012), and platelets (P < 0.001), but had a higher C-reactive protein (CRP) value (P = 0.04), and N-terminal-pro hormone BNP in comparison to patients with AM unrelated to SARS-CoV-2. The patients with AM related to SARS-CoV-2 had significant reduction of CRP (P = 0.007). Inotropic drug support was used for shorter durations in patients with AM related to SARS-CoV-2, than in others (P = 0.02). Children with AM related to SARS-CoV-2 had significant improvement of left ventricle systolic function on the third day in hospital (P = 0.001). Patients with AM unrelated to SARS-CoV-2 AM had more frequent adverse outcomes (P = 0.04; three died and four dilated cardiomyopathy). CONCLUSIONS: In contrast to patients with AM unrelated to SARS-CoV-2, patients with AM related to SARS-CoV-2 had a higher CRP value, polymorphic clinical presentation, shorter durations of inotropic drugs use as well as prompt recovery of left ventricle systolic function.


Subject(s)
COVID-19/pathology , Myocarditis/virology , Adolescent , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/physiopathology , COVID-19/virology , Child , Child, Preschool , Exanthema , Female , Humans , Inflammation/virology , Male , Myocarditis/metabolism , Myocarditis/pathology , Myocarditis/physiopathology , Retrospective Studies , SARS-CoV-2/isolation & purification , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/physiopathology , Systemic Inflammatory Response Syndrome/virology , Ventricular Function, Left
10.
Pediatr Rheumatol Online J ; 19(1): 29, 2021 Mar 16.
Article in English | MEDLINE | ID: covidwho-1136233

ABSTRACT

BACKGROUND: There is mounting evidence on the existence of a Pediatric Inflammatory Multisystem Syndrome-temporally associated to SARS-CoV-2 infection (PIMS-TS), sharing similarities with Kawasaki Disease (KD). The main outcome of the study were to better characterize the clinical features and the treatment response of PIMS-TS and to explore its relationship with KD determining whether KD and PIMS are two distinct entities. METHODS: The Rheumatology Study Group of the Italian Pediatric Society launched a survey to enroll patients diagnosed with KD (Kawasaki Disease Group - KDG) or KD-like (Kawacovid Group - KCG) disease between February 1st 2020, and May 31st 2020. Demographic, clinical, laboratory data, treatment information, and patients' outcome were collected in an online anonymized database (RedCAP®). Relationship between clinical presentation and SARS-CoV-2 infection was also taken into account. Moreover, clinical characteristics of KDG during SARS-CoV-2 epidemic (KDG-CoV2) were compared to Kawasaki Disease patients (KDG-Historical) seen in three different Italian tertiary pediatric hospitals (Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste; AOU Meyer, Florence; IRCCS Istituto Giannina Gaslini, Genoa) from January 1st 2000 to December 31st 2019. Chi square test or exact Fisher test and non-parametric Wilcoxon Mann-Whitney test were used to study differences between two groups. RESULTS: One-hundred-forty-nine cases were enrolled, (96 KDG and 53 KCG). KCG children were significantly older and presented more frequently from gastrointestinal and respiratory involvement. Cardiac involvement was more common in KCG, with 60,4% of patients with myocarditis. 37,8% of patients among KCG presented hypotension/non-cardiogenic shock. Coronary artery abnormalities (CAA) were more common in the KDG. The risk of ICU admission were higher in KCG. Lymphopenia, higher CRP levels, elevated ferritin and troponin-T characterized KCG. KDG received more frequently immunoglobulins (IVIG) and acetylsalicylic acid (ASA) (81,3% vs 66%; p = 0.04 and 71,9% vs 43,4%; p = 0.001 respectively) as KCG more often received glucocorticoids (56,6% vs 14,6%; p < 0.0001). SARS-CoV-2 assay more often resulted positive in KCG than in KDG (75,5% vs 20%; p < 0.0001). Short-term follow data showed minor complications. Comparing KDG with a KD-Historical Italian cohort (598 patients), no statistical difference was found in terms of clinical manifestations and laboratory data. CONCLUSION: Our study suggests that SARS-CoV-2 infection might determine two distinct inflammatory diseases in children: KD and PIMS-TS. Older age at onset and clinical peculiarities like the occurrence of myocarditis characterize this multi-inflammatory syndrome. Our patients had an optimal response to treatments and a good outcome, with few complications and no deaths.


Subject(s)
COVID-19/physiopathology , Coronary Artery Disease/physiopathology , Hypotension/physiopathology , Lymphopenia/physiopathology , Mucocutaneous Lymph Node Syndrome/physiopathology , Myocarditis/physiopathology , Systemic Inflammatory Response Syndrome/physiopathology , Age Distribution , Antirheumatic Agents/therapeutic use , Aspirin/therapeutic use , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/therapy , Child , Child, Preschool , Cough/physiopathology , Diarrhea/physiopathology , Dyspnea/physiopathology , Female , Glucocorticoids/therapeutic use , Heart Failure/physiopathology , Humans , Hyperferritinemia/metabolism , Hyperferritinemia/physiopathology , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Infant , Intensive Care Units, Pediatric , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Italy/epidemiology , Male , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/metabolism , Mucocutaneous Lymph Node Syndrome/therapy , Platelet Aggregation Inhibitors/therapeutic use , SARS-CoV-2 , Shock/physiopathology , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/therapy , Tachypnea/physiopathology , Troponin T/metabolism , Vomiting/physiopathology
12.
Pediatr Rheumatol Online J ; 19(1): 21, 2021 Feb 24.
Article in English | MEDLINE | ID: covidwho-1102340

ABSTRACT

IMPORTANCE: Active pediatric COVID-19 pneumonia and MIS-C are two disease processes requiring rapid diagnosis and different treatment protocols. OBJECTIVE: To distinguish active pediatric COVID-19 pneumonia and MIS-C using presenting signs and symptoms, patient characteristics, and laboratory values. DESIGN: Patients diagnosed and hospitalized with active COVID-19 pneumonia or MIS-C at Children's of Alabama Hospital in Birmingham, AL from April 1 through September 1, 2020 were identified retrospectively. Active COVID-19 and MIS-C cases were defined using diagnostic codes and verified for accuracy using current US Centers for Disease Control case definitions. All clinical notes were reviewed for documentation of COVID-19 pneumonia or MIS-C, and clinical notes and electronic medical records were reviewed for patient demographics, presenting signs and symptoms, prior exposure to or testing for the SARS-CoV-2 virus, laboratory data, imaging, treatment modalities and response to treatment. FINDINGS: 111 patients were identified, with 74 classified as mild COVID-19, 8 patients as moderate COVID-19, 8 patients as severe COVID-19, 10 as mild MIS-C and 11 as severe MIS-C. All groups had a male predominance, with Black and Hispanic patients overrepresented as compared to the demographics of Alabama. Most MIS-C patients were healthy at baseline, with most COVID-19 patients having at least one underlying illness. Fever, rash, conjunctivitis, and gastrointestinal symptoms were predominant in the MIS-C population whereas COVID-19 patients presented with predominantly respiratory symptoms. The two groups were similar in duration of symptomatic prodrome and exposure history to the SARS-CoV-2 virus, but MIS-C patients had a longer duration between presentation and exposure history. COVID-19 patients were more likely to have a positive SAR-CoV-2 PCR and to require respiratory support on admission. MIS-C patients had lower sodium levels, higher levels of C-reactive protein, erythrocyte sedimentation rate, d-dimer and procalcitonin. COVID-19 patients had higher lactate dehydrogenase levels on admission. MIS-C patients had coronary artery changes on echocardiography more often than COVID-19 patients. CONCLUSIONS AND RELEVANCE: This study is one of the first to directly compare COVID-19 and MIS-C in the pediatric population. The significant differences found between symptoms at presentation, demographics, and laboratory findings will aide health-care providers in distinguishing the two disease entities.


Subject(s)
COVID-19/physiopathology , Systemic Inflammatory Response Syndrome/physiopathology , Abdominal Pain/physiopathology , Adolescent , African Americans , Asthma/epidemiology , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Case-Control Studies , Child , Child, Preschool , Comorbidity , Conjunctivitis/physiopathology , Coronary Artery Disease , Diabetes Mellitus/epidemiology , Diarrhea/physiopathology , Dilatation, Pathologic , Echocardiography , Exanthema/physiopathology , Female , Fever/physiopathology , Heart Defects, Congenital/epidemiology , Humans , Hyponatremia/metabolism , Male , Nausea/physiopathology , Neoplasms/epidemiology , Neurodevelopmental Disorders/epidemiology , Obesity/epidemiology , SARS-CoV-2 , Severity of Illness Index , Sex Distribution , Stroke Volume , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/metabolism , Time Factors , Vomiting/physiopathology
13.
Eur Rev Med Pharmacol Sci ; 24(23): 12609-12622, 2020 12.
Article in English | MEDLINE | ID: covidwho-995022

ABSTRACT

OBJECTIVE: In human pathology, SARS-CoV-2 utilizes multiple molecular pathways to determine structural and biochemical changes within the different organs and cell types. The clinical picture of patients with COVID-19 is characterized by a very large spectrum. The reason for this variability has not been clarified yet, causing the inability to make a prognosis on the evolution of the disease. MATERIALS AND METHODS: PubMed search was performed focusing on the role of ACE 2 receptors in allowing the viral entry into cells, the role of ACE 2 downregulation in triggering the tissue pathology or in accelerating previous disease states, the role of increased levels of Angiotensin II in determining endothelial dysfunction and the enhanced vascular permeability, the role of the dysregulation of the renin angiotensin system in COVID-19 and the role of cytokine storm. RESULTS: The pathological changes induced by SARS-CoV-2 infection in the different organs, the correlations between the single cell types targeted by the virus in the different human organs and the clinical consequences, COVID-19 chronic pathologies in liver fibrosis, cardiac fibrosis and atrial arrhythmias, glomerulosclerosis and pulmonary fibrosis, due to the systemic fibroblast activation induced by angiotensin II are discussed. CONCLUSIONS: The main pathways involved showed different pathological changes in multiple tissues and the different clinical presentations. Even if ACE2 is the main receptor of SARS-CoV-2 and the main entry point into cells for the virus, ACE2 expression does not always explain the observed marked inter-individual variability in clinical presentation and outcome, evidencing the complexity of this disorder. The proper interpretation of the growing data available might allow to better classifying COVID-19 in human pathology.


Subject(s)
Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cardiomyopathies/metabolism , Cytokine Release Syndrome/metabolism , Endothelium, Vascular/physiopathology , Liver Cirrhosis/metabolism , Systemic Inflammatory Response Syndrome/metabolism , Thrombosis/metabolism , Angiotensin I/metabolism , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Blood Coagulation , COVID-19/pathology , COVID-19/physiopathology , Capillary Permeability , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cytokine Release Syndrome/physiopathology , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Myocarditis/metabolism , Myocarditis/pathology , Myocarditis/physiopathology , Receptors, Coronavirus/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , Systemic Inflammatory Response Syndrome/physiopathology , Thrombosis/physiopathology , Virus Internalization
16.
Cell ; 183(4): 982-995.e14, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-756809

ABSTRACT

Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.


Subject(s)
Inflammation/pathology , Systemic Inflammatory Response Syndrome/pathology , Adolescent , Antibodies, Viral/blood , Autoantibodies/blood , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Chemokine CCL3/metabolism , Child , Child, Preschool , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Immunity, Humoral , Infant , Infant, Newborn , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-18/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL