ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Subject(s)
Alzheimer Disease , COVID-19 , Multiple Sclerosis , Neurodegenerative Diseases , Parkinson Disease , Humans , SARS-CoV-2 , Systems Biology , Phosphatidylinositol 3-Kinases , Computational Biology , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/geneticsABSTRACT
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a contemporary hazard to people. It has been known that COVID-19 can both induce heart failure (HF) and raise the risk of patient mortality. However, the mechanism underlying the association between COVID-19 and HF remains unclear. The common molecular pathways between COVID-19 and HF were identified using bioinformatic and systems biology techniques. Transcriptome analysis was performed to identify differentially expressed genes (DEGs). To identify gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, common DEGs were used for enrichment analysis. The results showed that COVID-19 and HF have several common immune mechanisms, including differentiation of T helper (Th) 1, Th 2, Th 17 cells; activation of lymphocytes; and binding of major histocompatibility complex class I and II protein complexes. Furthermore, a protein-protein interaction network was constructed to identify hub genes, and immune cell infiltration analysis was performed. Six hub genes (FCGR3A, CD69, IFNG, CCR7, CCL5, and CCL4) were closely associated with COVID-19 and HF. These targets were associated with immune cells (central memory CD8 T cells, T follicular helper cells, regulatory T cells, myeloid-derived suppressor cells, plasmacytoid dendritic cells, macrophages, eosinophils, and neutrophils). Additionally, transcription factors, microRNAs, drugs, and chemicals that are closely associated with COVID-19 and HF were identified through the interaction network.
Subject(s)
COVID-19 , Heart Failure , Humans , Systems Biology , Computational Biology , SARS-CoV-2 , Molecular Targeted Therapy , Heart Failure/geneticsABSTRACT
BACKGROUND: Patients with non-alcoholic fatty liver disease (NAFLD) may be more susceptible to coronavirus disease 2019 (COVID-19) and even more likely to suffer from severe COVID-19. Whether there is a common molecular pathological basis for COVID-19 and NAFLD remains to be identified. The present study aimed to elucidate the transcriptional alterations shared by COVID-19 and NAFLD and to identify potential compounds targeting both diseases. METHODS: Differentially expressed genes (DEGs) for COVID-19 and NAFLD were extracted from the GSE147507 and GSE89632 datasets, and common DEGs were identified using the Venn diagram. Subsequently, we constructed a protein-protein interaction (PPI) network based on the common DEGs and extracted hub genes. Then, we performed gene ontology (GO) and pathway analysis of common DEGs. In addition, transcription factors (TFs) and miRNAs regulatory networks were constructed, and drug candidates were identified. RESULTS: We identified a total of 62 common DEGs for COVID-19 and NAFLD. The 10 hub genes extracted based on the PPI network were IL6, IL1B, PTGS2, JUN, FOS, ATF3, SOCS3, CSF3, NFKB2, and HBEGF. In addition, we also constructed TFs-DEGs, miRNAs-DEGs, and protein-drug interaction networks, demonstrating the complex regulatory relationships of common DEGs. CONCLUSION: We successfully extracted 10 hub genes that could be used as novel therapeutic targets for COVID-19 and NAFLD. In addition, based on common DEGs, we propose some potential drugs that may benefit patients with COVID-19 and NAFLD.
Subject(s)
COVID-19 , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Gene Regulatory Networks , Systems Biology , Gene Expression Profiling , Computational Biology , COVID-19/genetics , MicroRNAs/geneticsABSTRACT
COVID-19 is a systemic disease affecting tissues and organs, including and beyond the lung. Apart from the current pandemic context, we also have vastly inadequate knowledge of consequences of repeated exposures to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus causing COVID-19, in multiple organ systems and the whole organism scales when the disease evolves from a pandemic to an endemic state. This calls for a systems biology and systems medicine approach and unpacking the effects of COVID-19 in lung as well as other tissues. We report here original findings from transcriptomics analyses and differentially expressed genes (DEGs) in lung samples from 60 patients and 27 healthy controls, and in whole blood samples from 255 patients and 103 healthy individuals. A total of 11 datasets with RNA-seq transcriptomic data were obtained from the Gene Expression Omnibus and the European Nucleotide Archive. The identified DEGs were used to construct protein interaction and functional networks and to identify related pathways and miRNAs. We found 35 DEGs common between lung and the whole blood, and importantly, 2 novel genes, namely CYP1B1 and TNFAIP6, which have not been previously implicated with COVID-19. We also identified four novel miRNA potential regulators, hsa-mir-192-5p, hsa-mir-221-3p, hsa-mir-4756-3p, and hsa-mir-10a-5p, implicated in lung or other diseases induced by coronaviruses. In summary, these findings offer new molecular leads and insights to unpack COVID-19 systems biology in a whole organism context and might inform future antiviral drug, diagnostics, and vaccine discovery efforts.
Subject(s)
COVID-19 , MicroRNAs , Humans , Transcriptome/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Systems Biology , MicroRNAs/metabolism , Lung/metabolism , Computational BiologyABSTRACT
Background: The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods: Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results: We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein-protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor-gene interactions, DEG-microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion: We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.
Subject(s)
Asthma , COVID-19 , MicroRNAs , Animals , Asthma/genetics , Biomarkers, Tumor/genetics , COVID-19/genetics , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Interleukin-13/genetics , Interleukin-5/genetics , Mice , MicroRNAs/genetics , Systems Biology , Transcription Factors/geneticsSubject(s)
COVID-19 , Systems Biology , COVID-19/epidemiology , Computational Biology , Digital Technology , Genomics , HumansABSTRACT
Patients admitted to the hospital with coronavirus disease (COVID-19) are at risk for acquiring mycotic infections in particular Candidemia. Candida albicans (C. albicans) constitutes an important component of the human mycobiome and the most common cause of invasive fungal infections. Invasive yeast infections are gaining interest among the scientific community as a consequence of complications associated with severe COVID-19 infections. Early identification and surveillance for Candida infections is critical for decreasing the COVID-19 mortality. Our current study attempted to understand the molecular-level interactions between the human genes in different organs during systematic candidiasis. Our research findings have shed light on the molecular events that occur during Candidiasis in organs such as the kidney, liver, and spleen. The differentially expressed genes (up and down-regulated) in each organ will aid in designing organ-specific therapeutic protocols for systemic candidiasis. We observed organ-specific immune responses such as the development of the acute phase response in the liver; TGF-pathway and genes involved in lymphocyte activation, and leukocyte proliferation in the kidney. We have also observed that in the kidney, filament production, up-regulation of iron acquisition mechanisms, and metabolic adaptability are aided by the late initiation of innate defense mechanisms, which is likely related to the low number of resident immune cells and the sluggish recruitment of new effector cells. Our findings point to major pathways that play essential roles in specific organs during systemic candidiasis. The hub genes discovered in the study can be used to develop novel drugs for clinical management of Candidiasis.
Subject(s)
COVID-19 , Candidiasis , Candida albicans , Candidiasis/microbiology , Gene Expression , Humans , Systems BiologyABSTRACT
More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.
Subject(s)
COVID-19 , Communicable Diseases , COVID-19/complications , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Longitudinal Studies , Metabolomics/methods , Pandemics , Systems Biology/methodsABSTRACT
AIMS: The co-morbidities contribute to the inferior prognosis of COVID-19 patients. Recent reports suggested that the higher co-morbidity rate between COVID-19 and heart failure (HF) leads to increased mortality. However, the common pathogenic mechanism between them remained elusive. Here, we aimed to reveal underlying molecule mechanisms and genetic correlation between COVID-19 and HF, providing a new perspective on current clinical management for patients with co-morbidity. METHODS: The gene expression profiles of HF (GSE26887) and COVID-19 (GSE147507) were retrieved from the GEO database. After identifying the common differentially expressed genes (|log2FC| > 1 and adjusted P < 0.05), integrated analyses were performed, namely, enrichment analyses, protein-protein interaction network, module construction, critical gene identification, and functional co-expression analysis. The performance of critical genes was validation combining hierarchical clustering, correlation, and principal component analysis in external datasets (GSE164805 and GSE9128). Potential transcription factors and miRNAs were obtained from the JASPER and RegNetwork repository used to construct co-regulatory networks. The candidate drug compounds in potential genetic link targets were further identified using the DSigDB database. RESULTS: The alteration of 12 genes was identified as a shared transcriptional signature, with the role of immune inflammatory pathway, especially Toll-like receptor, NF-kappa B, chemokine, and interleukin-related pathways that primarily emphasized in response to SARS-CoV-2 complicated with HF. Top 10 critical genes (TLR4, TLR2, CXCL8, IL10, STAT3, IL1B, TLR1, TP53, CCL20, and CXCL10) were identified from protein-protein interaction with topological algorithms. The unhealthy microbiota status and gut-heart axis in co-morbidity were identified as potential disease roads in bridging pathogenic mechanism, and lipopolysaccharide acts as a potential marker for monitoring HF during COVID-19. For transcriptional and post-transcriptional levels, regulation networks tightly coupling with both disorders were constructed, and significant regulator signatures with high interaction degree, especially FOXC1, STAT3, NF-κB1, miR-181, and miR-520, were detected to regulate common differentially expressed genes. According to genetic links targets, glutathione-based antioxidant strategy combined with muramyl dipeptide-based microbe-derived immunostimulatory therapies was identified as promising anti-COVID-19 and anti-HF therapeutics. CONCLUSIONS: This study identified shared transcriptomic and corresponding regulatory signatures as emerging therapeutic targets and detected a set of pharmacologic agents targeting genetic links. Our findings provided new insights for underlying pathogenic mechanisms between COVID-19 and HF.
Subject(s)
COVID-19 , Heart Failure , MicroRNAs , Humans , COVID-19/epidemiology , COVID-19/genetics , Systems Biology , SARS-CoV-2/genetics , Heart Failure/epidemiology , Heart Failure/geneticsABSTRACT
Despite the availability of highly efficacious vaccines, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks effective drug treatment, which results in a high rate of mortality. To address this therapeutic shortcoming, we applied a systems biology approach to the study of patients hospitalized with severe COVID. We show that, at the time of hospital admission, patients who were equivalent on the clinical ordinal scale displayed significant differential monocyte epigenetic and transcriptomic attributes between those who would survive and those who would succumb to COVID-19. We identified messenger RNA metabolism, RNA splicing, and interferon signaling pathways as key host responses overactivated by patients who would not survive. Those pathways are prime drug targets to reduce mortality of critically ill patients with COVID-19, leading us to identify tacrolimus, zotatifin, and nintedanib as three strong candidates for treatment of severely ill patients at the time of hospital admission.
Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2 , Systems BiologyABSTRACT
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in an urgent need for identifying potential therapeutic drugs. In the first half of 2020 tropic antimalarial drugs, such as chloroquine (CQ) or hydroxochloroquine (HCQ) were the focus of tremendous public attention. In the initial periods of the pandemic, many scientific results pointed out that CQ/HCQ could be very effective for patients with severe COVID. While CQ and HCQ have successfully been used against several diseases (such as malaria, autoimmune disease and rheumatic illnesses); long term use of these agents are associated with serious adverse effects (i.e. inducing acute kidney injury, among many others) due to their role in blocking autophagy-dependent self-degradation. Recent experimental and clinical trial data also confirmed that there is no sufficient evidence about the efficient usage of CQ/HCQ against COVID-19. By using systems biology techniques, here we show that the cellular effect of CQ/HCQ on autophagy during endoplasmic reticulum (ER) stress or following SARS-CoV-2 infection results in upregulation of ER stress. By presenting a simple mathematical model, we claim that although CQ/HCQ might be able to ameliorate virus infection, the permanent inhibition of autophagy by CQ/HCQ has serious negative effects on the cell. Since CQ/HCQ promotes apoptotic cell death, here we confirm that addition of CQ/HCQ cannot be really effective even in severe cases. Only a transient treatment seemed to be able to avoid apoptotic cell death, but this type of therapy could not limit virus replication in the infected host. The presented theoretical analysis clearly points out the utility and applicability of systems biology modelling to test the cellular effect of a drug targeting key major processes, such as autophagy and apoptosis. Applying these approaches could decrease the cost of pre-clinical studies and facilitate the selection of promising clinical trials in a timely fashion.
Subject(s)
Autophagy , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Hydroxychloroquine/adverse effects , Pandemics , SARS-CoV-2 , Systems BiologyABSTRACT
The unprecedented scientific achievements in combating the COVID-19 pandemic reflect a global response informed by unprecedented access to data. We now have the ability to rapidly generate a diversity of information on an emerging pathogen and, by using high-performance computing and a systems biology approach, we can mine this wealth of information to understand the complexities of viral pathogenesis and contagion like never before. These efforts will aid in the development of vaccines, antiviral medications, and inform policymakers and clinicians. Here we detail computational protocols developed as SARS-CoV-2 began to spread across the globe. They include pathogen detection, comparative structural proteomics, evolutionary adaptation analysis via network and artificial intelligence methodologies, and multiomic integration. These protocols constitute a core framework on which to build a systems-level infrastructure that can be quickly brought to bear on future pathogens before they evolve into pandemic proportions.
Subject(s)
SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artificial Intelligence , Humans , Pandemics/prevention & control , Systems BiologyABSTRACT
The coronavirus disease 2019 (COVID-19) epidemic is currently raging around the world at a rapid speed. Among COVID-19 patients, SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) is the main contribution to the high ratio of morbidity and mortality. However, clinical manifestations between SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS are quite common, and their therapeutic treatments are limited because the intricated pathophysiology having been not fully understood. In this study, to investigate the pathogenic mechanism of SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS, first, we constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via database mining. With the help of host-pathogen RNA sequencing (RNA-Seq) data, real HPI-GWGEN of COVID-19-associated ARDS and non-viral ARDS were obtained by system modeling, system identification, and Akaike information criterion (AIC) model order selection method to delete the false positives in candidate HPI-GWGEN. For the convenience of mitigation, the principal network projection (PNP) approach is utilized to extract core HPI-GWGEN, and then the corresponding core signaling pathways of COVID-19-associated ARDS and non-viral ARDS are annotated via their core HPI-GWGEN by KEGG pathways. In order to design multiple-molecule drugs of COVID-19-associated ARDS and non-viral ARDS, we identified essential biomarkers as drug targets of pathogenesis by comparing the core signal pathways between COVID-19-associated ARDS and non-viral ARDS. The deep neural network of the drug-target interaction (DNN-DTI) model could be trained by drug-target interaction databases in advance to predict candidate drugs for the identified biomarkers. We further narrowed down these predicted drug candidates to repurpose potential multiple-molecule drugs by the filters of drug design specifications, including regulation ability, sensitivity, excretion, toxicity, and drug-likeness. Taken together, we not only enlighten the etiologic mechanisms under COVID-19-associated ARDS and non-viral ARDS but also provide novel therapeutic options for COVID-19-associated ARDS and non-viral ARDS.
Subject(s)
COVID-19 , Respiratory Distress Syndrome , Biomarkers , COVID-19/complications , Drug Design , Drug Repositioning , Humans , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Systems BiologyABSTRACT
The sudden outbreak and worldwide spread of the SARS-CoV-2 pandemic pushed the scientific community to find fast solutions to cope with the health emergency. COVID-19 complexity, in terms of clinical outcomes, severity, and response to therapy suggested the use of multifactorial strategies, characteristic of the network medicine, to approach the study of the pathobiology. Proteomics and interactomics especially allow to generate datasets that, reduced and represented in the forms of networks, can be analyzed with the tools of systems biology to unveil specific pathways central to virus-human host interaction. Moreover, artificial intelligence tools can be implemented for the identification of druggable targets and drug repurposing. In this review article, we provide an overview of the results obtained so far, from a systems biology perspective, in the understanding of COVID-19 pathobiology and virus-host interactions, and in the development of disease classifiers and tools for drug repurposing.
Subject(s)
COVID-19 , Systems Biology , Animals , Artificial Intelligence , Drug Repositioning , Host Microbial Interactions , HumansABSTRACT
Identification of transcriptional regulatory mechanisms and signaling networks involved in the response of host cells to infection by SARS-CoV-2 is a powerful approach that provides a systems biology view of gene expression programs involved in COVID-19 and may enable the identification of novel therapeutic targets and strategies to mitigate the impact of this disease. In this study, our goal was to identify a transcriptional regulatory network that is associated with gene expression changes between samples infected by SARS-CoV-2 and those that are infected by other respiratory viruses to narrow the results on those enriched or specific to SARS-CoV-2. We combined a series of recently developed computational tools to identify transcriptional regulatory mechanisms involved in the response of epithelial cells to infection by SARS-CoV-2, and particularly regulatory mechanisms that are specific to this virus when compared to other viruses. In addition, using network-guided analyses, we identified kinases associated with this network. The results identified pathways associated with regulation of inflammation (MAPK14) and immunity (BTK, MBX) that may contribute to exacerbate organ damage linked with complications of COVID-19. The regulatory network identified herein reflects a combination of known hits and novel candidate pathways supporting the novel computational pipeline presented herein to quickly narrow down promising avenues of investigation when facing an emerging and novel disease such as COVID-19.
Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , SARS-CoV-2/pathogenicity , Sequence Analysis, RNA/methods , A549 Cells , Cell Line , Epithelial Cells/chemistry , Epithelial Cells/cytology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Models, Biological , Systems BiologyABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification, therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics, proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling, may help further advance our knowledge of COVID-19.
Subject(s)
COVID-19 , Genomics , Pandemics , SARS-CoV-2 , Systems Biology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolismABSTRACT
BACKGROUND: Higher mortality of COVID-19 patients with lung disease is a formidable challenge for the health care system. Genetic association between COVID-19 and various lung disorders must be understood to comprehend the molecular basis of comorbidity and accelerate drug development. METHODS: Lungs tissue-specific neighborhood network of human targets of SARS-CoV-2 was constructed. This network was integrated with lung diseases to build a disease-gene and disease-disease association network. Network-based toolset was used to identify the overlapping disease modules and drug targets. The functional protein modules were identified using community detection algorithms and biological processes, and pathway enrichment analysis. RESULTS: In total, 141 lung diseases were linked to a neighborhood network of SARS-CoV-2 targets, and 59 lung diseases were found to be topologically overlapped with the COVID-19 module. Topological overlap with various lung disorders allows repurposing of drugs used for these disorders to hit the closely associated COVID-19 module. Further analysis showed that functional protein-protein interaction modules in the lungs, substantially hijacked by SARS-CoV-2, are connected to several lung disorders. FDA-approved targets in the hijacked protein modules were identified and that can be hit by exiting drugs to rescue these modules from virus possession. CONCLUSION: Lung diseases are clustered with COVID-19 in the same network vicinity, indicating the potential threat for patients with respiratory diseases after SARS-CoV-2 infection. Pathobiological similarities between lung diseases and COVID-19 and clinical evidence suggest that shared molecular features are the probable reason for comorbidity. Network-based drug repurposing approaches can be applied to improve the clinical conditions of COVID-19 patients.
Subject(s)
COVID-19/epidemiology , Drug Repositioning , Lung Diseases/epidemiology , Pandemics , SARS-CoV-2 , Algorithms , Antiviral Agents/therapeutic use , COVID-19/genetics , Comorbidity , Drug Discovery , Drug Repositioning/methods , Gene Regulatory Networks/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Lung Diseases/drug therapy , Lung Diseases/genetics , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , Systems BiologyABSTRACT
Rapid advances are taking place in the application of molecular simulations to study complex systems [...].
Subject(s)
Molecular Dynamics Simulation , Monte Carlo Method , Systems Biology , AlgorithmsABSTRACT
Severe acute respiratory syndrome (SARS) is a highly contagious viral respiratory illness. This illness is spurred on by a coronavirus known as SARS-associated coronavirus (SARS-CoV). SARS was first detected in Asia in late February 2003. The genome of this virus is very similar to the SARS-CoV-2. Therefore, the study of SARS-CoV disease and the identification of effective drugs to treat this disease can be new clues for the treatment of SARS-Cov-2. This study aimed to discover novel potential drugs for SARS-CoV disease in order to treating SARS-Cov-2 disease based on a novel systems biology approach. To this end, gene co-expression network analysis was applied. First, the gene co-expression network was reconstructed for 1441 genes, and then two gene modules were discovered as significant modules. Next, a list of miRNAs and transcription factors that target gene co-expression modules' genes were gathered from the valid databases, and two sub-networks formed of transcription factors and miRNAs were established. Afterward, the list of the drugs targeting obtained sub-networks' genes was retrieved from the DGIDb database, and two drug-gene and drug-TF interaction networks were reconstructed. Finally, after conducting different network analyses, we proposed five drugs, including FLUOROURACIL, CISPLATIN, SIROLIMUS, CYCLOPHOSPHAMIDE, and METHYLDOPA, as candidate drugs for SARS-CoV-2 coronavirus treatment. Moreover, ten miRNAs including miR-193b, miR-192, miR-215, miR-34a, miR-16, miR-16, miR-92a, miR-30a, miR-7, and miR-26b were found to be significant miRNAs in treating SARS-CoV-2 coronavirus.