Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Bull Exp Biol Med ; 172(6): 721-724, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1942032

ABSTRACT

This study was intended to define T lymphocyte subsets in different clinical groups of COVID-19-infected patients to explore the interaction between T cell-mediated immune response and the severity of COVID-19 course. Lymphopenia in patients with severe COVID-19 was found. In patients with severe COVID-19 course, the absolute counts of CD3+, CD4+, and CD8+ T lymphocytes at admission were lower than on day 14 after discharge. Further analysis showed that the older were the patients with COVID-19, the more likely they developed severe infection. The results confirmed the significance of T lymphocytes in the clearance of the COVID-19.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lymphocyte Count , Lymphocyte Subsets , T-Lymphocyte Subsets
2.
Clin Appl Thromb Hemost ; 28: 10760296221107889, 2022.
Article in English | MEDLINE | ID: covidwho-1892132

ABSTRACT

AIM: Our study's objectives were to study the clinical and laboratory characteristics that may serve as biomarkers for predicting disease severity, IL-10 levels, and frequencies of different T cell subsets in comorbid COVID-19 patients. METHODS: Sixty-two hospitalized COVID-19 patients with comorbidities were assessed clinically and radiologically. Blood samples were collected to assess the T lymphocyte subsets by flow cytometry and IL-10 levels by ELISA. RESULTS: The most common comorbidities observed in COVID-19 patients were diabetes mellitus (DM), hypertension, and malignancies. Common symptoms and signs included fever, cough, dyspnea, fatigue, myalgia, and sore throat. CRP, ferritin, D dimer, LDH, urea, creatinine, and direct bilirubin were significantly increased in patients than controls. Lymphocyte count and CD4+ and CD8+ T-cells were significantly decreased in comorbid COVID-19 patients, and CD25 and CD45RA expression were increased. CD4+ and CD8+ regulatory T cells (Tregs) and IL-10 levels were significantly decreased in patients. CONCLUSIONS: Many parameters were found to be predictive of severity in the comorbid patients in our study. Significant reductions in the levels and activation of CD4+ and CD8+ T-cells were found. In addition, CD4+ and CD8+ Tregs were significant decreased in patients, probably pointing to a prominent role of CD8+ Tregs in dampening CD4+ T-cell activation.


Subject(s)
COVID-19 , T-Lymphocyte Subsets , CD8-Positive T-Lymphocytes , COVID-19/immunology , Comorbidity , Humans , Interleukin-10 , Lymphocyte Count , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory
3.
Inflammopharmacology ; 30(3): 789-798, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1888931

ABSTRACT

Studies have shown that SARS-CoV-2 has the ability to activate and mature proinflammatory cytokines in the body. Cytokine markers are a group of polypeptide signalling molecules that can induce and regulate many cellular biological processes by stimulating cell receptors at the surface. SARS-CoV-2 has been shown to be associated with activation of innate immunity, and an increase in neutrophils, mononuclear phagocytes, and natural killer cells has been observed, as well as a decrease in T cells including CD4+ and CD8. It is noteworthy that during the SARS-CoV-2 infection, an increase in the secretion or production of IL-6 and IL-8 is seen in COVID-19 patients along with a decrease in CD4+ and CD8+ and T cells in general. SARS-CoV-2 has been shown to significantly increase Th2, Th1/Th17 cells and antibody production in the body of patients with COVID-19. Specific immune profiles of SARS-CoV-2 infection can lead to secondary infections and dysfunction of various organs in the body. It has been shown that Interleukins (such as IL-1, IL-4, IL-6, IL-7, IL-10, IL-12, IL-17, and IL-18), IFN-γ, TNF-α,TGF-ß and NF-κB play major roles in the body's inflammatory response to SARS-CoV-2 infection. The most important goal of this review is to study the role of inflammatory cytokines in COVID-19.


Subject(s)
COVID-19 , Cytokines , COVID-19/immunology , Cytokines/immunology , Humans , Interleukins/immunology , SARS-CoV-2 , T-Lymphocyte Subsets/immunology
4.
Clin Immunol ; 237: 108991, 2022 04.
Article in English | MEDLINE | ID: covidwho-1866980

ABSTRACT

Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lung , T-Lymphocyte Subsets , T-Lymphocytes, Cytotoxic
5.
J Leukoc Biol ; 112(1): 201-212, 2022 07.
Article in English | MEDLINE | ID: covidwho-1844079

ABSTRACT

T cells are thought to be an important correlates of protection against SARS-CoV2 infection. However, the composition of T cell subsets in convalescent individuals of SARS-CoV2 infection has not been well studied. The authors determined the lymphocyte absolute counts, the frequency of memory T cell subsets, and the plasma levels of common γ-chain in 7 groups of COVID-19 individuals, based on days since RT-PCR confirmation of SARS-CoV-2 infection. The data show that both absolute counts and frequencies of lymphocytes as well as, the frequencies of CD4+ central and effector memory cells increased, and the frequencies of CD4+ naïve T cells, transitional memory, stem cell memory T cells, and regulatory cells decreased from Days 15-30 to Days 61-90 and plateaued thereafter. In addition, the frequencies of CD8+ central memory, effector, and terminal effector memory T cells increased, and the frequencies of CD8+ naïve cells, transitional memory, and stem cell memory T cells decreased from Days 15-30 to Days 61-90 and plateaued thereafter. The plasma levels of IL-2, IL-7, IL-15, and IL-21-common γc cytokines started decreasing from Days 15-30 till Days 151-180. Severe COVID-19 patients exhibit decreased levels of lymphocyte counts and frequencies, higher frequencies of naïve cells, regulatory T cells, lower frequencies of central memory, effector memory, and stem cell memory, and elevated plasma levels of IL-2, IL-7, IL-15, and IL-21. Finally, there was a significant correlation between memory T cell subsets and common γc cytokines. Thus, the study provides evidence of alterations in lymphocyte counts, memory T cell subset frequencies, and common γ-chain cytokines in convalescent COVID-19 individuals.


Subject(s)
COVID-19 , Cytokines , Memory T Cells , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/blood , COVID-19/immunology , Convalescence , Cytokines/blood , Humans , Immunologic Memory/immunology , Interleukin-15/blood , Interleukin-2/blood , Interleukin-7/blood , Memory T Cells/immunology , RNA, Viral , SARS-CoV-2 , T-Lymphocyte Subsets/immunology
6.
Viral Immunol ; 35(4): 318-327, 2022 05.
Article in English | MEDLINE | ID: covidwho-1799489

ABSTRACT

Coronavirus disease 2019 (COVID-19) has clinical manifestations ranging from mild symptoms to respiratory failure, septic shock, and multi-organ failure. Lymphocytes are divided into different subtypes based on their cytokine production pattern. In this study, we investigated the role of cytokine expressions of CD4+ T (T helper [Th]1, Th2, Th17, Th22) and CD8+ T cell subtypes (T cytotoxic [Tc]1, Tc2, Tc17, Tc22) in the pathogenesis of COVID-19. Peripheral blood mononuclear cells (PBMCs) were extracted with Ficoll by density gradient centrifugation from blood samples of 180 COVID-19 patients (children and adults) and 30 healthy controls. PBMCs were stimulated with PMA and Ionomycin and treated with Brefeldin A in the fourth hour, and a 10-colored monoclonal antibody panel was evaluated at the end of the sixth hour using flow cytometry. According to our findings, the numbers of Th22 (CD3+, CD4+, and interleukin [IL]-22+) and Tc22 (CD3+, CD8+, IL-22+) cells increased in adult patients regardless of the level of pneumonia (mild, severe, or symptom-free) as compared with healthy controls (p < 0.05). In addition, the number of Tc17 (CD3+, CD8+, and IL-17A+) cells increased in low pneumonia and severe pneumonia groups compared with the healthy controls (p < 0.05). Both IL-22 and IL-17A production decreased during a follow-up within 6 weeks of discharge. Our findings suggest that the increase in only IL-22 expressed Tc22 cells in the 0-12 age group with a general symptom-free course and higher levels of Th22 and Tc22 in uncomplicated adult cases may indicate the protective effect of IL-22. On the contrary, the association between the severity of pneumonia and the elevation of Tc17 cells in adults may reveal the damaging effect of IL-22 when it is co-expressed with IL-17.


Subject(s)
COVID-19 , Interleukin-17 , Adult , CD8-Positive T-Lymphocytes , Child , Cytokines , Humans , Leukocytes, Mononuclear/metabolism , T-Lymphocyte Subsets , Th17 Cells
7.
Science ; 375(6585): 1080, 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1779303

ABSTRACT

Study finds human version of mouse immune regulators.


Subject(s)
Autoimmune Diseases/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Humans , Mice , Receptors, KIR/analysis
8.
Front Immunol ; 13: 834862, 2022.
Article in English | MEDLINE | ID: covidwho-1775666

ABSTRACT

Respiratory viral infections with SARS-CoV-2 and influenza viruses commonly induce a strong infiltration of immune cells into the human lung, with potential detrimental effects on the integrity of the lung tissue. Despite comprising the largest fractions of circulating lymphocytes in the lung, rather little is known about how peripheral blood natural killer (NK) cell and T cell subsets are equipped for lung-homing in COVID-19 and influenza. Here, we provide a detailed comparative analysis of NK cells and T cells in patients infected with SARS-CoV-2 or influenza virus, focusing on the protein and gene expression of chemokine receptors known to be involved in recruitment to the lung. For this, we used 28-colour flow cytometry as well as re-analysis of a publicly available single-cell RNA-seq dataset from bronchoalveolar lavage (BAL) fluid. Frequencies of NK cells and T cells expressing CXCR3, CXCR6, and CCR5 were altered in peripheral blood of COVID-19 and influenza patients, in line with increased transcript expression of CXCR3, CXCR6, and CCR5 and their respective ligands in BAL fluid. NK cells and T cells expressing lung-homing receptors displayed stronger phenotypic signs of activation compared to cells lacking lung-homing receptors, and activation was overall stronger in influenza compared to COVID-19. Together, our results indicate a role for CXCR3+, CXCR6+, and/or CCR5+ NK cells and T cells that potentially migrate to the lungs in moderate COVID-19 and influenza patients, identifying common targets for future therapeutic interventions in respiratory viral infections.


Subject(s)
COVID-19 , Influenza, Human , Gene Expression , Humans , Influenza, Human/metabolism , Killer Cells, Natural , Lung , SARS-CoV-2 , T-Lymphocyte Subsets
9.
Elife ; 112022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742931

ABSTRACT

Background: Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. Methods: Multiple regression was used to determine the relationship between abundance of specific blood lymphoid cell types, age, sex, requirement for hospitalization, duration of hospitalization, and elevation of blood markers of systemic inflammation, in adults hospitalized for severe COVID-19 (n = 40), treated for COVID-19 as outpatients (n = 51), and in uninfected controls (n = 86), as well as in children with COVID-19 (n = 19), recovering from COVID-19 (n = 14), MIS-C (n = 11), recovering from MIS-C (n = 7), and pediatric controls (n = 17). Results: This observational study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan - T cell subsets decrease less than 2-fold - and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis. Among controls, the percentage of ILCs that produced amphiregulin was higher in females than in males, and people hospitalized with COVID-19 had a lower percentage of ILCs that produced amphiregulin than did controls. Conclusions: These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance contributes to increased COVID-19 severity with age and in males. Funding: This work was supported in part by the Massachusetts Consortium for Pathogen Readiness and NIH grants R37AI147868, R01AI148784, F30HD100110, 5K08HL143183.


Subject(s)
COVID-19 , Lymphopenia , Amphiregulin , COVID-19/complications , Child , Female , Humans , Immunity, Innate , Inflammation , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , T-Lymphocyte Subsets
10.
Crit Rev Microbiol ; 46(6): 689-702, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1730391

ABSTRACT

Intensive worldwide efforts are underway to determine both the pathogenesis of SARS-CoV-2 infection and the immune responses in COVID-19 patients in order to develop effective therapeutics and vaccines. One type of cell that may contribute to these immune responses is the γδ T lymphocyte, which plays a key role in immunosurveillance of the mucosal and epithelial barriers by rapidly responding to pathogens. Although found in low numbers in blood, γδ T cells consist the majority of tissue-resident T cells and participate in the front line of the host immune defense. Previous studies have demonstrated the critical protective role of γδ T cells in immune responses to other respiratory viruses, including SARS-CoV-1. However, no studies have profoundly investigated these cells in COVID-19 patients to date. γδ T cells can be safely expanded in vivo using existing inexpensive FDA-approved drugs such as bisphosphonate, in order to test its protective immune response to SARS-CoV-2. To support this line of research, we review insights gained from previous coronavirus research, along with recent findings, discussing the potential role of γδ T cells in controlling SARS-CoV-2. We conclude by proposing several strategies to enhance γδ T cell's antiviral function, which may be used in developing therapies for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Animals , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication
11.
Front Immunol ; 12: 700705, 2021.
Article in English | MEDLINE | ID: covidwho-1686468

ABSTRACT

A novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), arose late in 2019, with disease pathology ranging from asymptomatic to severe respiratory distress with multi-organ failure requiring mechanical ventilator support. It has been found that SARS-CoV-2 infection drives intracellular complement activation in lung cells that tracks with disease severity. However, the cellular and molecular mechanisms responsible remain unclear. To shed light on the potential mechanisms, we examined publicly available RNA-Sequencing data using CIBERSORTx and conducted a Ingenuity Pathway Analysis to address this knowledge gap. In complement to these findings, we used bioinformatics tools to analyze publicly available RNA sequencing data and found that upregulation of complement may be leading to a downregulation of T-cell activity in lungs of severe COVID-19 patients. Thus, targeting treatments aimed at the modulation of classical complement and T-cell activity may help alleviate the proinflammatory effects of COVID-19, reduce lung pathology, and increase the survival of COVID-19 patients.


Subject(s)
COVID-19/genetics , Complement Activation/genetics , Complement System Proteins/genetics , Gene Expression Profiling/methods , Lung/metabolism , T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/virology , Gene Regulatory Networks/genetics , Humans , Intracellular Space/genetics , Lung/immunology , Lung/microbiology , Lymphocyte Count , SARS-CoV-2/physiology , T-Lymphocyte Subsets/metabolism
12.
Biomed Pharmacother ; 147: 112614, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1682939

ABSTRACT

Post-Covid pulmonary fibrosis is evident following severe COVID-19. There is an urgent need to identify the cellular and pathophysiological characteristics of chronic lung squeals of Covid-19 for the development of future preventive and/or therapeutic interventions. Tissue-resident memory T (TRM) cells can mediate local immune protection against infections and cancer. Less beneficially, lung TRM cells cause chronic airway inflammation and fibrosis by stimulating pathologic inflammation. The effects of Janus kinase (JAK), an inducer pathway of cytokine storm, inhibition on acute Covid-19 cases have been previously evaluated. Here, we propose that Tofacitinib by targeting the CD8+ TRM cells could be a potential candidate for the treatment of chronic lung diseases induced by acute SARS-CoV-2 infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/drug therapy , Janus Kinase Inhibitors/therapeutic use , Lung Injury/drug therapy , Piperidines/therapeutic use , Pyrimidines/therapeutic use , T-Lymphocyte Subsets/immunology , COVID-19/complications , COVID-19/immunology , Humans , Immunologic Memory/immunology , Lung/immunology , Lung Injury/etiology , Lung Injury/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
13.
Front Immunol ; 12: 785946, 2021.
Article in English | MEDLINE | ID: covidwho-1674333

ABSTRACT

Although cellular and molecular mediators of the immune system have the potential to be prognostic indicators of disease outcomes, temporal interference between diseases might affect the immune mediators, and make them difficult to predict disease complications. Today one of the most important challenges is predicting the prognosis of COVID-19 in the context of other inflammatory diseases such as traumatic injuries. Many diseases with inflammatory properties are usually polyphasic and the kinetics of inflammatory mediators in various inflammatory diseases might be different. To find the most appropriate evaluation time of immune mediators to accurately predict COVID-19 prognosis in the trauma environment, researchers must investigate and compare cellular and molecular alterations based on their kinetics after the start of COVID-19 symptoms and traumatic injuries. The current review aimed to investigate the similarities and differences of common inflammatory mediators (C-reactive protein, procalcitonin, ferritin, and serum amyloid A), cytokine/chemokine levels (IFNs, IL-1, IL-6, TNF-α, IL-10, and IL-4), and immune cell subtypes (neutrophil, monocyte, Th1, Th2, Th17, Treg and CTL) based on the kinetics between patients with COVID-19 and trauma. The mediators may help us to accurately predict the severity of COVID-19 complications and follow up subsequent clinical interventions. These findings could potentially help in a better understanding of COVID-19 and trauma pathogenesis.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/physiology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Wounds and Injuries/diagnosis , COVID-19/complications , COVID-19/immunology , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Prognosis , Wounds and Injuries/complications , Wounds and Injuries/immunology
14.
Viruses ; 14(1)2022 01 12.
Article in English | MEDLINE | ID: covidwho-1631201

ABSTRACT

γδ T cells are innate cells able to quickly eliminate pathogens or infected/tumoral cells by their antiviral and adjuvancy activities. The role of γδ T cells during Dengue Viral Infection (DENV) infection is not fully elucidated. Nevertheless, human primary γδ T cells have been shown to kill in vitro DENV-infected cells, thus highlighting their possible antiviral function. The aim of this work was to characterize the phenotype and function of Vδ2 T cells in DENV patients. Fifteen DENV patients were enrolled for this study and peripheral blood mononuclear cells (PBMC) were used to analyze Vδ2-T-cell frequency, differentiation profile, activation/exhaustion status, and functionality by multiparametric flow cytometry. Our data demonstrated that DENV infection was able to significantly reduce Vδ2-T-cell frequency and to increase their activation (CD38 and HLA-DR) and exhaustion markers (PD-1 and TIM-3). Furthermore, Vδ2 T cells showed a reduced capability to produce IFN-γ after phosphoantigenic stimulation that can be associated to TIM-3 expression. Several studies are needed to depict the possible clinical impact of γδ-T-cell impairment on disease severity and to define the antiviral and immunoregulatory activities of γδ T cells in the first phases of infection.


Subject(s)
Dengue/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Intraepithelial Lymphocytes/immunology , Adaptation, Physiological , Adult , Flow Cytometry , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Immunity, Innate , Leukocytes, Mononuclear/immunology , Lymphocyte Activation/immunology , Male , Middle Aged , T-Lymphocyte Subsets/immunology
15.
J Med Virol ; 94(5): 2089-2101, 2022 05.
Article in English | MEDLINE | ID: covidwho-1626431

ABSTRACT

COVID-19 is a disease characterized by acute respiratory failure and is a major health problem worldwide. Here, we aimed to investigate the role of CD39 expression in Treg cell subsets in COVID-19 immunopathogenesis and its relationship to disease severity. One hundred and ninety COVID-19 patients (juveniles, adults) and 43 volunteers as healthy controls were enrolled in our study. Flow cytometric analysis was performed using a 10-color monoclonal antibody panel from peripheral blood samples. In adult patients, CD39+ Tregs increased with disease severity. In contrast, CD39+ Tregs were decreased in juvenile patients in an age-dependent manner. Overall, our study reveals an interesting profile of CD39-expressing Tregs in adult and juvenile cases of COVID-19. Our results provide a better understanding of the possible role of Tregs in the mechanism of immune response in COVID-19 cases.


Subject(s)
Apyrase , COVID-19 , T-Lymphocytes, Regulatory , Adult , Apyrase/biosynthesis , Apyrase/immunology , Apyrase/metabolism , COVID-19/immunology , COVID-19/metabolism , Forkhead Transcription Factors , Humans , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology
16.
Front Immunol ; 12: 789735, 2021.
Article in English | MEDLINE | ID: covidwho-1581322

ABSTRACT

Background: The host immune response has a prominent role in the progression and outcome of SARS-CoV-2 infection. Lymphopenia has been described as an important feature of SARS-CoV-2 infection and has been associated with severe disease manifestation. Lymphocyte dysregulation and hyper-inflammation have been shown to be associated with a more severe clinical course; however, a T cell subpopulation whose dysfunction correlate with disease progression has yet to be identify. Methods: We performed an immuno-phenotypic analysis of T cell sub-populations in peripheral blood from patients affected by different severity of COVID-19 (n=60) and undergoing a different clinical evolution. Clinical severity was established based on a modified WHO score considering both ventilation support and respiratory capacity (PaO2/FiO2 ratio). The ability of circulating cells at baseline to predict the probability of clinical aggravation was explored through multivariate regression analyses. Results: The immuno-phenotypic analysis performed by multi-colour flow cytometry confirmed that patients suffering from severe COVID-19 harboured significantly reduced circulating T cell subsets, especially for CD4+ T, Th1, and regulatory T cells. Peripheral T cells also correlated with parameters associated with disease severity, i.e., PaO2/FiO2 ratio and inflammation markers. CD4+ T cell subsets showed an important significant association with clinical evolution, with patients presenting markedly decreased regulatory T cells at baseline having a significantly higher risk of aggravation. Importantly, the combination of gender and regulatory T cells allowed distinguishing between improved and worsened patients with an area under the ROC curve (AUC) of 82%. Conclusions: The present study demonstrates the association between CD4+ T cell dysregulation and COVID-19 severity and progression. Our results support the importance of analysing baseline regulatory T cell levels, since they were revealed able to predict the clinical worsening during hospitalization. Regulatory T cells assessment soon after hospital admission could thus allow a better clinical stratification and patient management.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Hospitalization , Lymphocyte Count , SARS-CoV-2/immunology , T-Lymphocytes, Regulatory/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/virology , COVID-19 Serological Testing , Cytokines/blood , Cytokines/metabolism , Disease Progression , Humans , Immunophenotyping , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Prognosis , Public Health Surveillance , ROC Curve , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism
17.
J Infect Dis ; 224(12): 2010-2019, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574912

ABSTRACT

BACKGROUND: Characterizing the longevity and quality of cellular immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enhances understanding of coronavirus disease 2019 (COVID-19) immunity that influences clinical outcomes. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Analysis of the function, durability, and diversity of cellular response long after natural infection, over a range of ages and disease phenotypes, is needed to identify preventative and therapeutic interventions. METHODS: We identified participants in our multisite longitudinal, prospective cohort study 12 months after SARS-CoV-2 infection representing a range of disease severity. We investigated function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry, and compared magnitude of SARS-CoV-2-specific antibodies. RESULTS: SARS-CoV-2-specific antibodies and T cells were detected 12 months postinfection. Severe acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12 months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. CONCLUSIONS: SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12 months postinfection, with higher frequency noted in those who experienced severe disease.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunologic Memory , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Antibodies, Viral , Antigens, Viral , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Female , Humans , Immunity, Cellular , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , Time Factors
18.
Front Cell Infect Microbiol ; 11: 624483, 2021.
Article in English | MEDLINE | ID: covidwho-1574395

ABSTRACT

The immune response type organized against viral infection is determinant in the prognosis of some infections. This work has aimed to study Th polarization in acute COVID-19 and its possible association with the outcome through an observational prospective study. Fifty-eight COVID-19 patients were recruited in the Medicine Department of the hospital "12 de Octubre," 55 patients remaining after losses to follow-up. Four groups were established according to maximum degree of disease progression. T-helper cell percentages and phenotypes, analyzed by flow cytometer, and serum cytokines levels, analyzed by Luminex, were evaluated when the microbiological diagnosis (acute phase) of the disease was obtained. Our study found a significant reduction of %Th1 and %Th17 cells with higher activated %Th2 cells in the COVID-19 patients compared with reference population. A higher percent of senescent Th2 cells was found in the patients who died than in those who survived. Senescent Th2 cell percentage was an independent risk factor for death (OR: 13.88) accompanied by the numbers of total lymphocytes (OR: 0.15) with an AUC of 0.879. COVID-19 patients showed a profile of pro-inflammatory serum cytokines compared to controls, with higher levels of IL-2, IL-6, IL-15, and IP-10. IL-10 and IL-13 were also elevated in patients compared to controls. Patients who did not survive presented significantly higher levels of IL-15 than those who recovered. No significant differences were observed according to disease progression groups. The study has shown that increased levels of IL-15 and a high Th2 response are associated with a fatal outcome of the disease.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Aged , COVID-19/blood , COVID-19/pathology , Cytokines/blood , Disease Progression , Female , Humans , Immunity , Male , Middle Aged , Multivariate Analysis , Prospective Studies , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology
19.
Viruses ; 13(11)2021 11 03.
Article in English | MEDLINE | ID: covidwho-1542790

ABSTRACT

The detailed characterization of human γδ T lymphocyte differentiation at the single-cell transcriptomic (scRNAseq) level in tumors and patients with coronavirus disease 2019 (COVID-19) requires both a reference differentiation trajectory of γδ T cells and a robust mapping method for additional γδ T lymphocytes. Here, we incepted such a method to characterize thousands of γδ T lymphocytes from (n = 95) patients with cancer or adult and pediatric COVID-19 disease. We found that cancer patients with human papillomavirus-positive head and neck squamous cell carcinoma and Epstein-Barr virus-positive Hodgkin's lymphoma have γδ tumor-infiltrating T lymphocytes that are more prone to recirculate from the tumor and avoid exhaustion. In COVID-19, both TCRVγ9 and TCRVγnon9 subsets of γδ T lymphocytes relocalize from peripheral blood mononuclear cells (PBMC) to the infected lung tissue, where their advanced differentiation, tissue residency, and exhaustion reflect T cell activation. Although severe COVID-19 disease increases both recruitment and exhaustion of γδ T lymphocytes in infected lung lesions but not blood, the anti-IL6R therapy with Tocilizumab promotes γδ T lymphocyte differentiation in patients with COVID-19. PBMC from pediatric patients with acute COVID-19 disease display similar γδ T cell lymphopenia to that seen in adult patients. However, blood γδ T cells from children with the COVID-19-related multisystem inflammatory syndrome are not lymphodepleted, but they are differentiated as in healthy PBMC. These findings suggest that some virus-induced memory γδ T lymphocytes durably persist in the blood of adults and could subsequently infiltrate and recirculate in tumors.


Subject(s)
COVID-19/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , RNA-Seq , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adult , Bronchoalveolar Lavage Fluid/immunology , COVID-19/complications , Cell Differentiation , Child , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Herpesvirus 4, Human/isolation & purification , Hodgkin Disease/immunology , Hodgkin Disease/virology , Humans , Lung/immunology , Lymphocyte Activation , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/physiology , Neoplasms/virology , Papillomaviridae/isolation & purification , Severity of Illness Index , Single-Cell Analysis , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocyte Subsets/physiology
20.
PLoS One ; 16(11): e0258743, 2021.
Article in English | MEDLINE | ID: covidwho-1511818

ABSTRACT

BCG vaccination is known to induce innate immune memory, which confers protection against heterologous infections. However, the effect of BCG vaccination on the conventional adaptive immune cells subsets is not well characterized. We investigated the impact of BCG vaccination on the frequencies of T cell subsets and common gamma c (γc) cytokines in a group of healthy elderly individuals (age 60-80 years) at one month post vaccination as part of our clinical study to examine the effect of BCG on COVID-19. Our results demonstrate that BCG vaccination induced enhanced frequencies of central (p<0.0001) and effector memory (p<0.0001) CD4+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001), stem cell memory (p = 0.0001) CD4+ T cells and regulatory T cells. In addition, BCG vaccination induced enhanced frequencies of central (p = 0.0008), effector (p<0.0001) and terminal effector memory (p<0.0001) CD8+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001) and stem cell memory (p = 0.0034) CD8+T cells. BCG vaccination also induced enhanced plasma levels of IL-7 (p<0.0001) and IL-15 (p = 0.0020) but diminished levels of IL-2 (p = 0.0033) and IL-21 (p = 0.0020). Thus, BCG vaccination was associated with enhanced memory T cell subsets as well as memory enhancing γc cytokines in elderly individuals, suggesting its ability to induce non-specific adaptive immune responses.


Subject(s)
BCG Vaccine/immunology , Cytokines/immunology , Immunologic Memory/immunology , Interleukin Receptor Common gamma Subunit/immunology , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Female , Humans , Interleukins/immunology , Male , Middle Aged , Mycobacterium tuberculosis/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL