Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Annu Rev Immunol ; 40: 443-467, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1807534

ABSTRACT

A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.


Subject(s)
COVID-19 , Hypersensitivity , Animals , Cytokines/metabolism , Homeostasis , Humans , T-Lymphocytes, Helper-Inducer/metabolism , Th2 Cells
2.
Cell Rep ; 38(8): 110399, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1664737

ABSTRACT

Follicular helper T (Tfh) cells promote, whereas follicular regulatory T (Tfr) cells restrain, germinal center (GC) reactions. However, the precise roles of these cells in the complex GC reaction remain poorly understood. Here, we perturb Tfh or Tfr cells after SARS-CoV-2 spike protein vaccination in mice. We find that Tfh cells promote the frequency and somatic hypermutation (SHM) of Spike-specific GC B cells and regulate clonal diversity. Tfr cells similarly control SHM and clonal diversity in the GC but do so by limiting clonal competition. In addition, deletion of Tfh or Tfr cells during primary vaccination results in changes in SHM after vaccine boosting. Aged mice, which have altered Tfh and Tfr cells, have lower GC responses, presenting a bimodal distribution of SHM. Together, these data demonstrate that GC responses to SARS-CoV-2 spike protein vaccines require a fine balance of positive and negative follicular T cell help to optimize humoral immunity.


Subject(s)
COVID-19/prevention & control , Germinal Center/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Aging , Animals , Antibodies, Viral/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , Germinal Center/cytology , Germinal Center/metabolism , Immunity, Humoral , Mice , Mice, Inbred C57BL , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Vaccination , Vaccines, Subunit/immunology
3.
Nat Commun ; 12(1): 6760, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1526073

ABSTRACT

Common genetic polymorphisms associated with COVID-19 illness can be utilized for discovering molecular pathways and cell types driving disease pathogenesis. Given the importance of immune cells in the pathogenesis of COVID-19 illness, here we assessed the effects of COVID-19-risk variants on gene expression in a wide range of immune cell types. Transcriptome-wide association study and colocalization analysis revealed putative causal genes and the specific immune cell types where gene expression is most influenced by COVID-19-risk variants. Notable examples include OAS1 in non-classical monocytes, DTX1 in B cells, IL10RB in NK cells, CXCR6 in follicular helper T cells, CCR9 in regulatory T cells and ARL17A in TH2 cells. By analysis of transposase accessible chromatin and H3K27ac-based chromatin-interaction maps of immune cell types, we prioritized potentially functional COVID-19-risk variants. Our study highlights the potential of COVID-19 genetic risk variants to impact the function of diverse immune cell types and influence severe disease manifestations.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Receptors, CCR/genetics , Receptors, CCR/metabolism , Risk Factors , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
5.
Nat Commun ; 12(1): 1403, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1117351

ABSTRACT

SARS-CoV-2 vaccines are advancing into human clinical trials, with emphasis on eliciting high titres of neutralising antibodies against the viral spike (S). However, the merits of broadly targeting S versus focusing antibody onto the smaller receptor binding domain (RBD) are unclear. Here we assess prototypic S and RBD subunit vaccines in homologous or heterologous prime-boost regimens in mice and non-human primates. We find S is highly immunogenic in mice, while the comparatively poor immunogenicity of RBD is associated with limiting germinal centre and T follicular helper cell activity. Boosting S-primed mice with either S or RBD significantly augments neutralising titres, with RBD-focussing driving moderate improvement in serum neutralisation. In contrast, both S and RBD vaccines are comparably immunogenic in macaques, eliciting serological neutralising activity that generally exceed levels in convalescent humans. These studies confirm recombinant S proteins as promising vaccine candidates and highlight multiple pathways to achieving potent serological neutralisation.


Subject(s)
COVID-19 Vaccines/therapeutic use , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/immunology , Antibody Formation/physiology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Viral Vaccines/therapeutic use
6.
Front Immunol ; 11: 596964, 2020.
Article in English | MEDLINE | ID: covidwho-1067653

ABSTRACT

We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A+ and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ+&TNFα+, IL-17A+ and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ+ and IFNγ+&TNFα+, and H1N1-specific IL-17A+ T-helper/Memory cells were observed. Systemically, Nano-11-KAg+Poly(I:C) vaccine augmented H1N2-specific IFNγ+ CTLs and H1N1-specific IFNγ+ T-helper/Memory cells, and commercial vaccine boosted H1N2- specific early effector CTLs and H1N1-specific IFNγ+&TNFα+ CTLs, as well as H1N2- and H1N1-specific T-helper/Memory cells with central memory, IFNγ+&TNFα+, and IL-17A+ phenotypes. Remarkably, commercial vaccine induced an increase in H1N1-specific T-helper cells in TBLN and naive T-helper cells in both TBLN and peripheral blood mononuclear cells (PBMCs), while H1N1- and H1N2-specific only T-helper cells were augmented in Nano-11-KAg+Poly(I:C) vaccinates in both TBLN and PBMCs. Furthermore, the Nano-11-KAg+Poly(I:C) vaccine stimulated robust cross-reactive IgG and secretory IgA (SIgA) responses in lungs, while the commercial vaccine elicited high levels of serum and lung IgG and serum hemagglutination inhibition (HI) titers. In conclusion, despite vast genetic difference (77% in HA gene identity) between the vaccine H1N2 and H1N1 challenge viruses in Nano-11-KAg+Poly(I:C) vaccinates, compared to over 95% identity between H1N1 of commercial vaccine and challenge viruses, the virus load and macroscopic lesions in the lungs of both types of vaccinates were comparable, but the Nano-11-KAg+Poly(I:C) vaccine cleared the virus from the nasal passage better. These data suggested the important role played by Nano-11 and Poly(I:C) in the induction of polyfunctional, cross-protective cell-mediated immunity against SwIAV in MDA-positive pigs.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Nanoparticles , Orthomyxoviridae Infections/veterinary , Poly I-C , Swine Diseases/prevention & control , Vaccines, Inactivated , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cross Reactions , Cytokines/metabolism , Immunity, Cellular , Immunologic Memory , Influenza Vaccines/chemistry , Nanoparticles/chemistry , Poly I-C/chemistry , Swine , Swine Diseases/immunology , Swine Diseases/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Viral Load
7.
Front Immunol ; 11: 596553, 2020.
Article in English | MEDLINE | ID: covidwho-979020

ABSTRACT

The severity of SARS-CoV-2 infection has been related to uncontrolled inflammatory innate responses and impaired adaptive immune responses mostly due to exhausted T lymphocytes and lymphopenia. In this work we have characterized the nature of the lymphopenia and demonstrate a set of factors that hinder the effective control of virus infection and the activation and arming of effector cytotoxic T CD8 cells and showing signatures defining a high-risk population. We performed immune profiling of the T helper (Th) CD4+ and T CD8+ cell compartments in peripheral blood of 144 COVID-19 patients using multiparametric flow cytometry analysis. On the one hand, there was a consistent lymphopenia with an overrepresentation of non-functional T cells, with an increased percentage of naive Th cells (CD45RA+, CXCR3-, CCR4-, CCR6-, CCR10-) and persistently low frequency of markers associated with Th1, Th17, and Th1/Th17 memory-effector T cells compared to healthy donors. On the other hand, the most profound alteration affected the Th1 subset, which may explain the poor T cells responses and the persistent blood virus load. Finally, the decrease in Th1 cells may also explain the low frequency of CD4+ and CD8+ T cells that express the HLA-DR and CD38 activation markers observed in numerous patients who showed minimal or no lymphocyte activation response. We also identified the percentage of HLA-DR+CD4+ T cells, PD-1+CD+4/CD8+ T cells in blood, and the neutrophil/lymphocyte ratio as useful factors for predicting critical illness and fatal outcome in patients with confirmed COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/metabolism , Aged , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/virology , Cell Differentiation/immunology , Female , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , Humans , Lymphocyte Activation/immunology , Male , Middle Aged , Prospective Studies , SARS-CoV-2/physiology , T-Lymphocytes, Helper-Inducer/metabolism , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL