Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Sci Rep ; 11(1): 24442, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1577650

ABSTRACT

Therapeutic interventions targeting viral infections remain a significant challenge for both the medical and scientific communities. While specific antiviral agents have shown success as therapeutics, viral resistance inevitably develops, making many of these approaches ineffective. This inescapable obstacle warrants alternative approaches, such as the targeting of host cellular factors. Respiratory syncytial virus (RSV), the major respiratory pathogen of infants and children worldwide, causes respiratory tract infection ranging from mild upper respiratory tract symptoms to severe life-threatening lower respiratory tract disease. Despite the fact that the molecular biology of the virus, which was originally discovered in 1956, is well described, there is no vaccine or effective antiviral treatment against RSV infection. Here, we demonstrate that targeting host factors, specifically, mTOR signaling, reduces RSV protein production and generation of infectious progeny virus. Further, we show that this approach can be generalizable as inhibition of mTOR kinases reduces coronavirus gene expression, mRNA transcription and protein production. Overall, defining virus replication-dependent host functions may be an effective means to combat viral infections, particularly in the absence of antiviral drugs.


Subject(s)
Coronavirus/metabolism , Respiratory Syncytial Virus, Human/metabolism , TOR Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , A549 Cells , Coronavirus/drug effects , Coronavirus/genetics , Gene Expression Regulation, Viral/drug effects , Humans , Protein Biosynthesis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , RNA Interference , RNA, Small Interfering/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/antagonists & inhibitors , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/antagonists & inhibitors , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/isolation & purification , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Viral Proteins/genetics
2.
Biomed Pharmacother ; 144: 112230, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1517059

ABSTRACT

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has become a serious challenge for medicine and science. Analysis of the molecular mechanisms associated with the clinical manifestations and severity of COVID-19 has identified several key points of immune dysregulation observed in SARS-CoV-2 infection. For diabetic patients, factors including higher binding affinity and virus penetration, decreased virus clearance and decreased T cell function, increased susceptibility to hyperinflammation, and cytokine storm may make these patients susceptible to a more severe course of COVID-19 disease. Metabolic changes induced by diabetes, especially hyperglycemia, can directly affect the immunometabolism of lymphocytes in part by affecting the activity of the mTOR protein kinase signaling pathway. High mTOR activity can enhance the progression of diabetes due to the activation of effector proinflammatory subpopulations of lymphocytes and, conversely, low activity promotes the differentiation of T-regulatory cells. Interestingly, metformin, an extensively used antidiabetic drug, inhibits mTOR by affecting the activity of AMPK. Therefore, activation of AMPK and/or inhibition of the mTOR-mediated signaling pathway may be an important new target for drug therapy in COVID-19 cases mostly by reducing the level of pro-inflammatory signaling and cytokine storm. These suggestions have been partially confirmed by several retrospective analyzes of patients with diabetes mellitus hospitalized for severe COVID-19.


Subject(s)
COVID-19/drug therapy , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Immunity, Cellular/drug effects , Metformin/therapeutic use , Severity of Illness Index , COVID-19/epidemiology , COVID-19/immunology , COVID-19/metabolism , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Humans , Hypoglycemic Agents/pharmacology , Immunity, Cellular/physiology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Metformin/pharmacology , Mortality/trends , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism
3.
J Immunol ; 207(9): 2310-2324, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1497461

ABSTRACT

IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.


Subject(s)
Interferon-gamma/biosynthesis , Macrophages/drug effects , Poly I-C/pharmacology , COVID-19/immunology , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/immunology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/immunology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/immunology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , Toll-Like Receptor 4/agonists
4.
Front Endocrinol (Lausanne) ; 12: 731974, 2021.
Article in English | MEDLINE | ID: covidwho-1485049

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a worldwide epidemic. It spreads very fast and hits people of all ages, especially patients with underlying diseases such as diabetes. In this review, we focus on the influences of diabetes on the outcome of SARS-CoV-2 infection and the involved mechanisms including lung dysfunction, immune disorder, abnormal expression of angiotensin-converting enzyme 2 (ACE2), overactivation of mechanistic target of rapamycin (mTOR) signaling pathway, and increased furin level. On the other hand, SARS-CoV-2 may trigger the development of diabetes. It causes the damage of pancreatic ß cells, which is probably mediated by ACE2 protein in the islets. Furthermore, SARS-CoV-2 may aggravate insulin resistance through attacking other metabolic organs. Of note, certain anti-diabetic drugs (OADs), such as peroxisome proliferator-activated receptor γ (PPARγ) activator and glucagon-like peptide 1 receptor (GLP-1R) agonist, have been shown to upregulate ACE2 in animal models, which may increase the risk of SARS-CoV-2 infection. However, Metformin, as a first-line medicine for the treatment of type 2 diabetes mellitus (T2DM), may be a potential drug benefiting diabetic patients with SARS-CoV-2 infection, probably via a suppression of mTOR signaling together with its anti-inflammatory and anti-fibrosis function in lung. Remarkably, another kind of OADs, dipeptidyl Peptidase 4 (DPP4) inhibitor, may also exert beneficial effects in this respect, probably via a prevention of SARS-CoV-2 binding to cells. Thus, it is of significant to identify appropriate OADs for the treatment of diabetes in the context of SARS-CoV-2 infections.


Subject(s)
COVID-19/epidemiology , COVID-19/metabolism , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Lung/drug effects , Lung/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
5.
J Immunol ; 207(9): 2310-2324, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1436143

ABSTRACT

IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.


Subject(s)
Interferon-gamma/biosynthesis , Macrophages/drug effects , Poly I-C/pharmacology , COVID-19/immunology , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/immunology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/immunology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/immunology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , Toll-Like Receptor 4/agonists
6.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1304662

ABSTRACT

The aim of this study was to evaluate the effect of everolimus, a mammalian target of rapamycin (mTOR) inhibitor, on red blood cell parameters in the context of iron homeostasis in patients with tuberous sclerosis complex (TSC) and evaluate its effect on cell size in vitro. Everolimus has a significant impact on red blood cell parameters in patients with TSC. The most common alteration was microcytosis. The mean MCV value decreased by 9.2%, 12%, and 11.8% after 3, 6, and 12 months of everolimus treatment. The iron level declined during the first 3 months, and human soluble transferrin receptor concentration increased during 6 months of therapy. The size of K562 cells decreased when cultured in the presence of 5 µM everolimus by approximately 8%. The addition of hemin to the cell culture with 5 µM everolimus did not prevent any decrease in cell size. The stage of erythroid maturation did not affect the response to everolimus. Our results showed that the mTOR inhibitor everolimus caused red blood cell microcytosis in vivo and in vitro. This effect is not clearly related to a deficit of iron and erythroid maturation. This observation confirms that mTOR signaling plays a complex role in the control of cell size.


Subject(s)
Cell Size/drug effects , Erythrocytes/drug effects , Erythrocytes/pathology , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adolescent , Biomarkers , Cell Differentiation/drug effects , Cell Line , Child , Child, Preschool , Erythrocyte Indices , Erythrocytes/metabolism , Everolimus/administration & dosage , Everolimus/adverse effects , Everolimus/pharmacology , Flow Cytometry , Humans , Iron/metabolism , K562 Cells , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
7.
Ann Transplant ; 26: e929279, 2021 Mar 12.
Article in English | MEDLINE | ID: covidwho-1154830

ABSTRACT

Coronavirus disease 19 (COVID-19) has been an ongoing pandemic since December 2019. Unfortunately, kidney transplant recipients are a high-risk group during the disease course, and scientific data are still limited in this patient group. Beyond the dosage of immunosuppressive drugs, pharmacological immunosuppression may also alter the infection response in the COVID-19 course. The effects of immunosuppressive agents on the development and process of infection should not be decided only by determining how potent they are and how much they suppress the immune system; it is also thought that the direct effect of the virus, increased oxidative stress, and cytokine storm play a role in the pathogenesis of COVID-19 disease. There are data about immunosuppressive drugs like calcineurin inhibitors (CNI) or mammalian target of rapamycin inhibitors (mTORi) therapy related to their beneficial effects during any infection course. Limited data suggest that the use of CNI or mTORi may have beneficial effects on the process. In this hypothetical review, the probable impacts of CNI and mTORi on the pathogenesis of the COVID-19 were investigated.


Subject(s)
COVID-19/immunology , Calcineurin Inhibitors/therapeutic use , Graft Rejection/prevention & control , Immunosuppressive Agents/therapeutic use , Kidney Transplantation , Postoperative Complications/immunology , Protein Kinase Inhibitors/therapeutic use , Adaptive Immunity/drug effects , COVID-19/diagnosis , Calcineurin Inhibitors/pharmacology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Graft Rejection/immunology , Humans , Immunity, Innate/drug effects , Immunocompromised Host , Immunosuppressive Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Postoperative Complications/diagnosis , Postoperative Complications/virology , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors
8.
Hum Cell ; 34(2): 698-699, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1060392

ABSTRACT

The current COVID-19 is one of the deadliest pandemics in recent decades. In the lack of a specific treatment for this novel infection, knowing the role of cell signaling pathways in the pathogenesis of this infection could be useful in finding effective drugs against this disease. The mammalian or mechanistic target of rapamycin (mTOR) is an important cell signaling pathway that has important role in the regulation of cell growth, protein synthesis, and metabolism in reactance to upstream signals in both pathological and normal physiological conditions. Recently, some researchers have suggested the therapeutic potential of mTOR inhibitors such as rapamycin against COVID-19. However, it is important to consider the role of activation of this pathway in controlling immune system response against viral activity in drug repositioning of rapamycin and other mTOR inhibitors in SARS-CoV-2 infection.


Subject(s)
COVID-19/drug therapy , Drug Repositioning , Immune System/immunology , Signal Transduction/genetics , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology , COVID-19/immunology , Humans , Signal Transduction/physiology
9.
BMJ Case Rep ; 14(1)2021 Jan 11.
Article in English | MEDLINE | ID: covidwho-1020889

ABSTRACT

We present a kidney-pancreas transplant recipient who achieved complete recovery from COVID-19. A 45-year-old patient with T3 paraplegia underwent kidney-pancreas transplantation 18 years ago, followed by a subsequent kidney transplant 9 years ago, and presented with fever, hypoxia and hypotension after exposure to two confirmed cases of COVID-19. History of solid organ transplant, pre-existing renal impairment, asthma and an elevated D-dimer were identified as established risk factors for severe COVID-19. Supportive management was provided, baseline immunosuppression with everolimus was continued, and oral prednisolone was increased. A complete recovery was observed. Given the favourable outcome despite risk factors for severe COVID-19, we identify and review the potential mitigating roles of immunosuppression and mammalian target of rapamycin (mTOR) inhibitors in this disease. Further investigation is required to establish whether mTOR inhibitors could be used as therapeutic agents to treat COVID-19, or as alternative immunosuppression implemented early in the COVID-19 disease course.


Subject(s)
COVID-19/complications , Glucocorticoids/therapeutic use , Graft Rejection/prevention & control , Immunosuppressive Agents/therapeutic use , Kidney Transplantation , Pancreas Transplantation , Paraplegia/complications , Accidents, Traffic , Asthma/complications , COVID-19/metabolism , COVID-19/physiopathology , COVID-19/therapy , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/surgery , Everolimus/therapeutic use , Fever/physiopathology , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Hypotension/physiopathology , Hypoxia/physiopathology , Male , Middle Aged , Prednisolone/therapeutic use , SARS-CoV-2 , TOR Serine-Threonine Kinases/antagonists & inhibitors
10.
J Med Virol ; 93(4): 1843-1846, 2021 04.
Article in English | MEDLINE | ID: covidwho-971501

ABSTRACT

In this commentary, we shed light on the role of the mammalian target of rapamycin (mTOR) pathway in viral infections. The mTOR pathway has been demonstrated to be modulated in numerous RNA viruses. Frequently, inhibiting mTOR results in suppression of virus growth and replication. Recent evidence points towards modulation of mTOR in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We discuss the current literature on mTOR in SARS-CoV-2 and highlight evidence in support of a role for mTOR inhibitors in the treatment of coronavirus disease 2019.


Subject(s)
COVID-19/drug therapy , RNA Viruses/physiology , SARS-CoV-2/physiology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Middle East Respiratory Syndrome Coronavirus/physiology , RNA Viruses/genetics , RNA Viruses/pathogenicity , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Virus Replication
12.
Chem Biol Interact ; 331: 109282, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-816316

ABSTRACT

The novel human coronavirus-2 (HCoV-2), called SARS-CoV-2, is the causative agent of Coronavirus Induced Disease (COVID-19) and has spread causing a global pandemic. Currently, there is no vaccine to prevent infection nor any approved drug for the treatment. The development of a new drug is time-consuming and cannot be relied on as a solution in combatting the immediate global challenge. In such a situation, the drug repurposing becomes an attractive solution to identify the potential of COVID-19 treatment by existing drugs, which are approved for other indications. Here, we review the potential use of rapamycin, an mTOR (Mammalian Target of Rapamycin) inhibitor that can be repurposed at low dosages for the treatment of COVID-19. Rapamycin inhibits protein synthesis, delays aging, reduces obesity in animal models, and inhibits activities or expression of pro-inflammatory cytokines such as IL-2, IL-6 and, IL-10. Overall, the use of rapamycin can help to control viral particle synthesis, cytokine storms and contributes to fight the disease by its anti-aging and anti-obesity effects. Since, rapamycin targets the host factors and not viral machinery, it represents a potent candidate for the treatment of COVID-19 than antiviral drugs as its efficacy is less likely to be dampened with high mutation rate of viral RNA. Additionally, the inhibitory effect of rapamycin on cell proliferation may aid in reducing viral replication. Therefore, by drug repurposing, low dosages of rapamycin can be tested for the potential treatment of COVID-19/SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , Sirolimus/therapeutic use , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Cell Proliferation/drug effects , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/metabolism , Gene Expression/drug effects , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Virus Replication/drug effects
13.
Expert Opin Pharmacother ; 21(15): 1813-1819, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-643617

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide. While there are presently a few case reports/series on COVID-19 amongst solid organ transplant (SOT) patients, there is no official guideline for the management of SOT patients. AREAS COVERED: The authors discuss the pharmacotherapeutic management of SOT patients during the COVID-19 outbreak and provide their expert perspectives. EXPERT OPINION: Prophylactic reduction of immunosuppression because of fear of COVID-19 is not suggested in SOT patients. With maintenance immunosuppressive regimens, corticosteroids can be continued during COVID-19. Continuing other immunosuppressive drugs with lowest effective dose/blood concentration is suggested for patients with mild to moderate COVID-19. Discontinuation of antimetabolites and perhaps inhibitors of mammalian target of rapamycin (mTOR) is suggested in moderate to severe COVID-19. Calcineurin inhibitors (CNIs) may be continued or substituted for mTOR inhibitors with lowest therapeutic concentrations in moderate to severe COVID-19. If continued in patients with COVID-19, therapeutic drug monitoring of CNIs/mTOR inhibitors and appropriate dose reduction is recommended in co-administration with protease inhibitors, hydroxychloroquine/chloroquine, or interleukin (IL)-1/IL-6 receptor antagonists. Complete blood count monitoring is recommended in patients who continue taking antimetabolites or mTOR inhibitors. Dose modification/avoidance should be considered for chloroquine, atazanavir, oseltamivir, ribavirin, anakinra, and Janus associated kinase inhibitors in patients with organ function impairment.


Subject(s)
Coronavirus Infections/epidemiology , Organ Transplantation/methods , Pneumonia, Viral/epidemiology , COVID-19 , Calcineurin Inhibitors/therapeutic use , Humans , Immunosuppressive Agents/therapeutic use , Pandemics , TOR Serine-Threonine Kinases/antagonists & inhibitors
14.
Gastroenterol Hepatol ; 43(8): 457-463, 2020 Oct.
Article in English, Spanish | MEDLINE | ID: covidwho-639589

ABSTRACT

SARS-CoV-2 infection has produced a pandemic with serious consequences for our health care system. Although liver transplant patients represent only a minority of the population, the hepatologists who follow these patients have tried to coordinate efforts to produce a protocol the management of immunosuppression during SARS-CoV-2 infection. Although there are no solid studies to support general recommendations, experiences with other viral infections (hepatitis C, cytomegalovirus) suggest that management of immunosuppression without mycophenolate mofetil or m-Tor inhibitors (drugs that are also associated with leukopenia and lymphopenia) may be beneficial. It is also important to pay attention to possible drug interactions, especially in the case of tacrolimus, with some of the treatments with antiviral effect given in the context of COVID 19 (lopinavir/ritonavir, azithromycin). Finally, the immunosuppressive effect of immunomodulating drugs (tocilizumab and similar) administered to patients with severe lung disease should be taken into account. The mechanisms of action of the different immunosuppressive drugs are reviewed in this article, as well as their potential effect on SARS-CoV-2 infection, and suggests guidelines for the management of immunosuppression.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Immunosuppressive Agents/adverse effects , Liver Transplantation , Pandemics , Pneumonia, Viral/epidemiology , Adaptive Immunity , Antiviral Agents/pharmacology , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , Calcineurin Inhibitors/adverse effects , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use , Contraindications, Drug , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Disease Susceptibility , Drug Interactions , Everolimus/adverse effects , Everolimus/pharmacology , Everolimus/therapeutic use , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Immunity, Innate , Immunocompromised Host , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Mycophenolic Acid/adverse effects , Mycophenolic Acid/pharmacology , Mycophenolic Acid/therapeutic use , Pneumonia, Viral/immunology , Postoperative Complications/immunology , Postoperative Complications/prevention & control , SARS-CoV-2 , Sirolimus/adverse effects , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors
15.
J Med Virol ; 92(9): 1495-1500, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-261292

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a major global public health concern. The mortality rate for critically ill patients is up to 60%, and, thus, reducing the disease severity and case mortality is a top priority. Currently, cytokine storms are considered as the major cause of critical illness and death due to COVID-19. After a systematical review of the literature, we propose that cross-reactive antibodies associated with antibody-dependent enhancement (ADE) may actually be the cause of cytokine storms. It would be more difficult to develop vaccines for highly pathogenic human coronaviruses (CoVs) if ADE characteristics are taken into consideration. Therefore, it is urgent to find an effective way to prevent the occurrence of severe illness as severe acute respiratory syndrome CoV-2 specific drugs or vaccines are still in development. If the activation of memory B cells can be selectively inhibited in high-risk patients at an early stage of COVID-19 to reduce the production of cross-reactive antibodies against the virus, we speculate that ADE can be circumvented and severe symptoms can be prevented. The mammalian target of rapamycin (mTOR) inhibitors satisfy such needs and it is recommended to conduct clinical trials for mTOR inhibitors in preventing the severity of COVID-19.


Subject(s)
Antibody-Dependent Enhancement , COVID-19/drug therapy , Immunomodulation , TOR Serine-Threonine Kinases/antagonists & inhibitors , Antibodies, Viral/immunology , B-Lymphocytes/drug effects , Cross Reactions , Cytokine Release Syndrome/virology , Humans
16.
Curr Neurovasc Res ; 17(3): 332-337, 2020.
Article in English | MEDLINE | ID: covidwho-215240

ABSTRACT

Multiple viral pathogens can pose a significant health risk to individuals. As a recent example, the ß-coronavirus family virion, SARS-CoV-2, has quickly evolved as a pandemic leading to coronavirus disease 2019 (COVID-19) and has been declared by the World Health Organization as a Public Health Emergency of International Concern. To date, no definitive treatment or vaccine application exists for COVID-19. Although new investigations seek to repurpose existing antiviral treatments for COVID-19, innovative treatment strategies not normally considered to have antiviral capabilities may be critical to address this global concern. One such avenue that may prove to be exceedingly fruitful and offer exciting potential as new antiviral therapy involves the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), and AMP activated protein kinase (AMPK). Recent work has shown that mTOR pathways in conjunction with AMPK may offer valuable targets to control cell injury, oxidative stress, mitochondrial dysfunction, and the onset of hyperinflammation, a significant disability associated with COVID-19. Furthermore, pathways that can activate mTOR may be necessary for anti-hepatitis C activity, reduction of influenza A virus replication, and vital for type-1 interferon responses with influenza vaccination. Yet, important considerations for the development of safe and effective antiviral therapy with mTOR pathways exist. Under some conditions, mTOR can act as a double edge sword and participate in virion replication and virion release from cells. Future work with mTOR as a potential antiviral target is highly warranted and with a greater understanding of this novel pathway, new treatments against several viral pathogens may successfully emerge.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...