ABSTRACT
INTRODUCTION: The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive model. OBJECTIVES: Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples acquired at hospital admission. The study aims to predict the patient's infection severity (i.e., mild or severe) and potential outcome (i.e., discharged or deceased). METHODS: High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created. RESULTS: The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate (indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines (energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74-0.91) and 0.76 (CI 0.67-0.86). CONCLUSION: Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.
Subject(s)
COVID-19/blood , Chromatography, Liquid/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness IndexABSTRACT
Growing studies focusing on nuclear acid detection via the emerging CRISPR technique demonstrate its promising application. However, limited works solve the identification of non-nucleic acid targets, especially multiple small molecules. To address challenges for point-of-care testing (POCT) in complex matrices for healthcare, environment, and food safety, we developed CRISPR Cas12a-powered highly sensitive, high throughput, intelligent POCT (iPOCT) for multiple small molecules based on a smartphone-controlled reader. As a proof of concept, aflatoxin B1 (AFB1), benzo[a]pyrene (BaP), and capsaicin (CAP) were chosen as multiple targets. First, three antigens were preloaded in independent microwells. Then, the antibody/antigen-induced fluorescent signals were consecutively transferred from the biotin-streptavidin to CRISPR/Cas12a system. Third, the fluorescent signals were recorded by a smartphone-controlled handheld dark-box readout. Under optimization, detection limits in AFB1, BaP, and CAP were 0.00257, 4.971, and 794.6 fg/mL with wide linear ranges up to four orders of magnitude. Using urine, water, soybean oil, wheat, and peanuts as the complex matrix, we recorded high selectivity, considerable recovery, repeatability, and high consistency comparison to HPLC-MS/MS methods. This work promises a practical intelligent POCT platform for multiple targets in lipid-soluble and water-soluble matrices and could be extensively applied for healthcare, environment, and food safety.
Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Tandem Mass Spectrometry , Aflatoxin B1 , Capsaicin , Coloring Agents , Point-of-Care Testing , Delivery of Health CareABSTRACT
BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Peptides , Plant Extracts , Tandem Mass SpectrometryABSTRACT
PURPOSE OF REVIEW: Adrenal insufficiency (AI) is the clinical manifestation of deficient production of glucocorticoids with occasionally deficiency also in mineralocorticoids and adrenal androgens and constitutes a fatal disorder if left untreated. The aim of this review is to summarize the new trends in diagnostic methods used for determining the presence of AI. RECENT FINDINGS: Novel aetiologies of AI have emerged; severe acute respiratory syndrome coronavirus 2 infection was linked to increased frequency of primary AI (PAI). A new class of drugs, the immune checkpoint inhibitors (ICIs) widely used for the treatment of several malignancies, has been implicated mostly with secondary AI, but also with PAI. Salivary cortisol is considered a noninvasive and patient-friendly tool and has shown promising results in diagnosing AI, although the normal cut-off values remain an issue of debate depending on the technique used. Liquid chromatography-mass spectrometry (LC-MS/MS) is the most reliable technique although not widely available. SUMMARY: Our research has shown that little progress has been made regarding our knowledge on AI. Coronavirus disease 2019 and ICIs use constitute new evidence on the pathogenesis of AI. The short synacthen test (SST) remains the 'gold-standard' method for confirmation of AI diagnosis, although salivary cortisol is a promising tool.
Subject(s)
Adrenal Insufficiency , COVID-19 , Humans , Hydrocortisone , Chromatography, Liquid , Tandem Mass Spectrometry , COVID-19/diagnosis , Adrenal Insufficiency/diagnosis , COVID-19 TestingABSTRACT
BACKGROUND AND OBJECTIVE: Resistance to antibacterial substances is a huge and still emerging issue, especially with regard to Gram-negative bacteria and in critically ill patients. We report a study in six patients infected with extensively drug-resistant Gram-negative bacteria in a limited outbreak who were successfully managed with a quasi-continuous infusion of cefiderocol. METHODS: Patients were initially treated with prolonged infusions of cefiderocol over 3 h every 8 h, and the application mode was then switched to a quasi-continuous infusion of 2 g over 8 h, i.e. 6 g in 24 h. Therapeutic drug monitoring (TDM) was established using an in-house liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. RESULTS: Determined trough plasma concentrations were a median of 50.00 mg/L [95% confidence interval (CI) 27.20, 74.60] and steady-state plasma concentrations were a median of 90.96 mg/L [95% CI 37.80, 124]. No significant differences were detected with respect to acute kidney injury/continuous renal replacement therapy. Plasma concentrations determined from different modes of storage were almost equal when frozen or cooled, but markedly reduced when stored at room temperature. CONCLUSIONS: (Quasi) continuous application of cefiderocol 6 g/24 h in conjunction with TDM is a feasible mode of application; the sample for TDM should either be immediately analyzed, cooled, or frozen prior to analysis.
Subject(s)
Drug Monitoring , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Feasibility Studies , Anti-Bacterial Agents/therapeutic use , Gram-Negative BacteriaABSTRACT
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is highly heterogeneous, ranging from asymptomatic to severe and fatal cases. COVID-19 has been characterized by an increase of serum pro-inflammatory cytokine levels which seems to be associated with fatal cases. By contrast, the role of pro-resolving lipid mediators (SPMs), involved in the attenuation of inflammatory responses, has been scarcely investigated, so further studies are needed to understand SPMs metabolism in COVID-19 and other infectious diseases. Our aim was to analyse the lipid mediator metabolome, quantifying pro- and anti-inflammatory serum bioactive lipids by LC-MS/MS in 7 non-infected subjects and 24 COVID-19 patients divided into mild, moderate, and severe groups according to the pulmonary involvement, to better understand the disease outcome and the severity of the pulmonary manifestations. Statistical analysis was performed with the R programming language (R Foundation for Statistical Computing, Vienna, Austria). All COVID-19 patients had increased levels of Prostaglandin E2. Severe patients showed a significant increase versus controls, mild- and moderate-affected patients, expressed as median (interquartile range), in resolvin E1 [112.6 (502.7) vs 0.0 (0.0) pg/ml in the other groups], as well as in maresin 2 [14.5 (7.0) vs 8.1 (4.2), 5.5 (4.3), and 3.0 (4.0) pg/ml, respectively]. Moreover, 14-hydroxy docosahexaenoic acid (14-HDHA) levels were also increased in severe vs control and mild-affected patients [24.7 (38.2) vs 2.4 (2.2) and 3.7 (6.4) ng/mL, respectively]. Resolvin D5 was also significantly elevated in both moderate [15.0 (22.4) pg/ml] and severe patients [24.0 (24.1) pg/ml] versus controls [0.0 (0.0) pg/ml]. These results were confirmed by sparse partial least squares discriminant analysis which highlighted the contribution of these mediators to the separation between each of the groups. In conclusion, the potent inflammatory response to SARS-CoV-2 infection involves not only pro- but also anti-inflammatory lipid mediators that can be quantified in easily accessible serum samples, suggesting the need to perform future research on their generation pathways that will help us to discover new therapeutic targets.
Subject(s)
COVID-19 , Humans , Pilot Projects , Chromatography, Liquid , SARS-CoV-2/metabolism , Tandem Mass Spectrometry , Lung/metabolism , Eicosanoids/metabolism , Anti-Inflammatory Agents , Patient AcuityABSTRACT
Traditional medicine shows several treatment protocols for COVID-19 based on natural products, revealing its potential as a possible source of anti-SARS-CoV-2 agents. Ampelozizyphus amazonicus is popularly used in the Brazilian Amazon as a fortifier and tonic, and recently, it has been reported to relieve COVID-19 symptoms. This work aimed to investigate the antiviral potential of A. amazonicus, focusing on the inhibition of spike and ACE2 receptor interaction, a key step in successful infection. Although saponins are the major compounds of this plant and often reported as its active principles, a polyphenol-rich extract was the best inhibitor of the spike and ACE2 interaction. Chemical characterization of A. amazonicus bark extracts by LC-DAD-APCI-MS/MS before and after clean-up steps for polyphenol removal showed that the latter play an essential role in maintaining this activity. The effects of the extracts on viral replication were also assessed, and all samples (aqueous and ethanol extracts) demonstrated in vitro activity, inhibiting viral titers in the supernatant of Calu-3 cells after 24 hpi. By acting both in the SARS-CoV-2 cell entry process and its replication, A. amazonicus bark extracts stand out as a multitarget agent, highlighting the species as a promising candidate in the development of anti-SARS-CoV-2 drugs.
Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Plant Bark , Tandem Mass Spectrometry , Antiviral Agents/pharmacology , Protein BindingABSTRACT
BACKGROUND: Voriconazole (VRC), a widely used triazole antifungal, exhibits significant inter- and intra-individual pharmacokinetic variability. The main metabolite voriconazole N-oxide (NOX) can provide information on the patient's drug metabolism capacity. OBJECTIVES: Our objectives were to implement routine measurement of NOX concentrations and to describe the metabolic ratio (MR), and the contribution of the MR to VRC therapeutic drug monitoring (TDM) by proposing a suggested dosage-adjustment algorithm. PATIENTS AND METHODS: Sixty-one patients treated with VRC were prospectively included in the study, and VRC and NOX levels were assayed by LC-MS/MS. A mixed logistic model on repeated measures was implemented to analyse risk factors for the patient's concentration to be outside the therapeutic range. RESULTS: Based on 225 measurements, the median and interquartile range were 2.4 µg/ml (1.2; 4.2), 2.1 µg/ml (1.5; 3.0) and 1.0 (0.6; 1.9) for VRC, NOX and the MR, respectively. VRC Cmin <2 µg/ml were associated with a higher MR during the previous visit. MR values >1.15 and <0.48 were determined to be the best predictors for having a VRC Cmin lower than 2 µg/ml and above 5.5 µg/ml, respectively, at the next visit. CONCLUSIONS: Measurement of NOX resulted useful for TDM of patients treated with VRC. The MR using NOX informed interpretation and clinical decision-making and is very interesting for complex patients. VRC phenotyping based on the MR is now performed routinely in our institution. A dosing algorithm has been suggested from these results.
Subject(s)
Drug Monitoring , Invasive Fungal Infections , Humans , Voriconazole , Drug Monitoring/methods , Chromatography, Liquid , Tandem Mass Spectrometry , Antifungal Agents , Invasive Fungal Infections/drug therapy , OxidesABSTRACT
BRIEF INTRODUCTION: Mucormycosis disease, which has recently expanded with the Covid 19 pandemic in many countries, endangers patients' lives, and treatment with common drugs is fraught with unfavorable side effects. AIM AND OBJECTIVES: This study deals with the economic production of sophorolipids (SLs) from different eight fungal isolates strains utilizing potato peels waste (PPW) and frying oil waste (FOW). Then investigate their effect against mucormycetes fungi. RESULTS: The screening of the isolates for SLs production revealed the highest yield (39 g/100 g substrate) with most efficiency was related to a yeast that have been identified genetically as Candida parapsilosis. Moreover, the characterizations studies of the produced SLs by FTIR, 1H NMR and LC-MS/MS proved the existence of both acidic and lactonic forms, while their surface activity was confirmed by the surface tension (ST) assessment. The SLs production was optimized utilizing Box-Behnken design resulting in the amelioration of yield by 30% (55.3 g/100 g substrate) and ST by 20.8% (38mN/m) with constant level of the critical micelle concentration (CMC) at 125 mg/L. The studies also revealed the high affinity toward soybean oil (E24 = 50%), in addition to maintaining the emulsions stability against broad range of pH (4-10) and temperature (10-100â). Furthermore, the antifungal activity against Mucor racemosus, Rhizopus microsporus, and Syncephalastrum racemosum proved a high inhibition efficiency of the produced SLs. CONCLUSION: The findings demonstrated the potential application of the SLs produced economically from agricultural waste as an effective and safer alternative for the treatment of infection caused by black fungus.
Subject(s)
COVID-19 , Mucorales , Solanum tuberosum , Humans , Candida parapsilosis , Chromatography, Liquid , Tandem Mass SpectrometryABSTRACT
INTRODUCTION: The COVID-19 outbreak has put enormous pressure on the scientific community to detect infection rapidly, identify the status of disease severity, and provide an immediate vaccine/drug for the treatment. Relying on immunoassay and a real-time reverse transcription polymerase chain reaction (rRT-PCR) led to many false-negative and false-positive reports. Therefore, detecting biomarkers is an alternative and reliable approach for determining the infection, its severity, and disease progression. Recent advances in liquid chromatography and mass spectrometry (LC-MS/MS) enable the protein biomarkers even at low concentrations, thus facilitating clinicians to monitor the treatment in hospitals. AREAS COVERED: This review highlights the role of LC-MS/MS in identifying protein biomarkers and discusses the clinically significant protein biomarkers such as Serum amyloid A, Interleukin-6, C-Reactive Protein, Lactate dehydrogenase, D-dimer, cardiac troponin, ferritin, Alanine transaminase, Aspartate transaminase, gelsolin and galectin-3-binding protein in COVID-19, and their analysis by LC-MS/MS in the early stage. EXPERT OPINION: Clinical doctors monitor significant biomarkers to understand, stratify, and treat patients according to disease severity. Knowledge of clinically significant COVID-19 protein biomarkers is critical not only for COVID-19 caused by the coronavirus but also to prepare us for future pandemics of other diseases in detecting by LC-MS/MS at the early stages.
Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Chromatography, Liquid , Tandem Mass Spectrometry , BiomarkersABSTRACT
Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving the highest yield of biologically active substances. Several experimental conditions were investigated in the pressure range of 50-400 bar, with 2% of ethanol as co-solvent in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are: pressure of 100 bar and a temperature of 55 °C for M. amurensis heartwood. The heartwood of M. amurensis contains various polyphenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI-ion trap) was applied to detect target analytes. High-accuracy mass spectrometric data were recorded on an ion trap equipped with an ESI source in the modes of negative and positive ions. The four-stage ion separation mode was implemented. Sixty-six different biologically active components have been identified in M. amurensis extracts. Twenty-two polyphenols were identified for the first time in the genus Maackia.
Subject(s)
Carbon Dioxide , Maackia , Tandem Mass Spectrometry , Polyphenols , Solvents/chemistry , Chromatography, High Pressure Liquid , Ethanol , Plant Extracts/chemistryABSTRACT
VV116 is an oral nucleoside anti-COVID-19 drug undergoing clinical trials in China. We aimed to characterize its metabolites in plasma, urine, and feces of healthy Chinese male subjects after a single oral administration of 400 mg VV116, by using UHPLC-UV-Orbitrap-MS. After oral administration, VV116 was almost completely converted into the metabolite 116-N1. Seventeen other metabolites produced by the subsequent metabolism of 116-N1 were also detected, including 6 phase I metabolites and 11 phase II metabolites resulting from hydrolysis, oxidative deamination, oxidation, and CN-group removal and conjugations. The results were exploratory. The major metabolite of VV116 in human plasma and urine was 116-N1, the main metabolites in feces were M2 and 116-N1. We then synthesized a reference M2 standard and confirmed its structure by MS and NMR.
Subject(s)
Nucleosides , Tandem Mass Spectrometry , Humans , Male , Pharmaceutical Preparations , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Administration, OralABSTRACT
We explored the impact of chronic Strongyloides stercoralis infection on the gut microbiome and microbial activity in a longitudinal study. At baseline (time-point T0), 42 fecal samples from matched individuals (21 positive for strongyloidiasis and 21 negative) were subjected to microbiome 16S-rRNA sequencing. Those positive at T0 (untreated then because of COVID19 lockdowns) were retested one year later (T1). Persistent infection in these individuals indicated chronic strongyloidiasis: they were treated with ivermectin and retested four months later (T2). Fecal samples at T1 and T2 were subjected to 16S-rRNA sequencing and LC-MS/MS to determine microbial diversity and proteomes. No significant alteration of indices of gut microbial diversity was found in chronic strongyloidiasis. However, the Ruminococcus torques group was highly over-represented in chronic infection. Metaproteome data revealed enrichment of Ruminococcus torques mucin-degrader enzymes in infection, possibly influencing the ability of the host to expel parasites. Metaproteomics indicated an increase in carbohydrate metabolism and Bacteroidaceae accounted for this change in chronic infection. STITCH interaction networks explored highly expressed microbial proteins before treatment and short-chain fatty acids involved in the synthesis of acetate. In conclusion, our data indicate that chronic S. stercoralis infection increases Ruminococcus torques group and alters the microbial proteome.
Subject(s)
COVID-19 , Strongyloides stercoralis , Strongyloidiasis , Humans , Animals , Strongyloidiasis/parasitology , Proteome , Persistent Infection , Longitudinal Studies , Ruminococcus , Chromatography, Liquid , Communicable Disease Control , Tandem Mass Spectrometry , Feces/parasitologyABSTRACT
Vitamin D plays a critical role in bone development and maintenance, and in other physiological functions. The quantitation of endogenous levels of individual vitamin D and its metabolites is crucial for assessing several disease state conditions. With cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leading to the coronavirus disease 2019 (COVID-19) pandemic, there are several studies that have associated lower levels of serum vitamin D with severity of infection in COVID-19 patients. In this context, we have developed and validated a robust LC-MS/MS method for simultaneous quantitation of vitamin D and its metabolites in human dried blood spot (DBS) obtained from participants tested for COVID-19. The chromatographic separation for vitamin D and metabolites was performed using an ACE Excel C18 PFP column protected with a C18 guard column (Phenomenex, Torrance, CA, USA). The mobile phase consisted of formic acid in water (0.1% v/v) as mobile phase A and formic acid in methanol (0.1% v/v) as mobile phase B, operated at a flow rate of 0.5 mL/min. Analysis was performed utilizing the LC-MS/MS technique. The method was sensitive with a limit of quantification of 0.78 ng/mL for all analytes, and had a large dynamic range (200 ng/mL) with a total run time of 11 min. The inter- and intraday accuracy and precision values met the acceptance criteria per the US Food and Drug Administration guidelines. Blood concentrations of 25(OH)D3, vitamin D3, 25(OH)D2, and vitamin D2 over a range of 2-195.6, 0.5-121.5, 0.6-54.9, and 0.5-23.9 ng/mL, respectively, were quantified in 909 DBS samples. In summary, our developed LC-MS/MS method may be used for quantification of vitamin D and its metabolites in DBS, and may be applied to investigations of the emerging role of these compounds in various physiological processes.
Subject(s)
COVID-19 , Vitamin D , Humans , Chromatography, Liquid/methods , SARS-CoV-2 , Tandem Mass Spectrometry/methods , Vitamins , Biomarkers , Reproducibility of ResultsABSTRACT
SARS-CoV-2 infection goes beyond acute pneumonia, as it also impacts lipid metabolism. Decreased HDL-C and LDL-C levels have been reported in patients with COVID-19. The lipid profile is a less robust biochemical marker than apolipoproteins, components of lipoproteins. However, the association of apolipoprotein levels during COVID-19 is not well described and understood. The objective of our study is to measure plasma levels of 14 apolipoproteins in patients with COVID-19 and to evaluate the relationships between apolipoprotein levels, severity factors and patient outcomes. From November to March 2021, 44 patients were recruited on admission to the intensive care unit because of COVID-19. Fourteen apolipoproteins and LCAT were measured by LC-MS/MS in plasma of 44 COVID-19 patients on admission to the ICU and 44 healthy control subjects. Absolute apolipoprotein concentrations were compared between COVID-19 patients and controls. Plasma apolipoproteins (Apo) A (I, II, IV), C(I, II), D, H, J and M and LCAT were lower in COVID-19 patients, whereas Apo E was higher. COVID-19 severity factors such as PaO2/FiO2 ratio, SO-FA score and CRP were correlated with certain apolipoproteins. Lower Apo B100 and LCAT levels were observed in non-survivors of COVID-19 versus survivors. To conclude, in this study, lipid and apolipoprotein profiles are altered in COVID-19 patients. Low Apo B100 and LCAT levels may be predictive of non-survival in COVID-19 patients.
Subject(s)
COVID-19 , Cholesterol , Humans , Cohort Studies , Chromatography, Liquid , Cholesterol/metabolism , SARS-CoV-2/metabolism , Tandem Mass Spectrometry , Apolipoproteins , Apolipoproteins A , Apolipoprotein B-100 , Intensive Care Units , Apolipoprotein A-I , Apolipoproteins B , Apolipoprotein A-IIABSTRACT
Angiotensin II (AngII) is a vasoactive peptide hormone, which, under pathological conditions, contributes to the development of cardiovascular diseases. Oxysterols, including 25-hydroxycholesterol (25-HC), the product of cholesterol-25-hydroxylase (CH25H), also have detrimental effects on vascular health by affecting vascular smooth muscle cells (VSMCs). We investigated AngII-induced gene expression changes in VSMCs to explore whether AngII stimulus and 25-HC production have a connection in the vasculature. RNA-sequencing revealed that Ch25h is significantly upregulated in response to AngII stimulus. The Ch25h mRNA levels were elevated robustly (~50-fold) 1 h after AngII (100 nM) stimulation compared to baseline levels. Using inhibitors, we specified that the AngII-induced Ch25h upregulation is type 1 angiotensin II receptor- and Gq/11 activity-dependent. Furthermore, p38 MAPK has a crucial role in the upregulation of Ch25h. We performed LC-MS/MS to identify 25-HC in the supernatant of AngII-stimulated VSMCs. In the supernatants, 25-HC concentration peaked 4 h after AngII stimulation. Our findings provide insight into the pathways mediating AngII-induced Ch25h upregulation. Our study elucidates a connection between AngII stimulus and 25-HC production in primary rat VSMCs. These results potentially lead to the identification and understanding of new mechanisms in the pathogenesis of vascular impairments.
Subject(s)
Angiotensin II , Muscle, Smooth, Vascular , Steroid Hydroxylases , Animals , Rats , Angiotensin II/metabolism , Cells, Cultured , Chromatography, Liquid , Gene Expression , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/metabolism , Tandem Mass Spectrometry , Steroid Hydroxylases/geneticsABSTRACT
The COVID-19 pandemic has been a major challenge worldwide, forcing countries to take restrictive measures beyond conventional methods in their fight against the spread of the disease. Followingly, many studies have been conducted on the effects of these measures on mental health. Wastewater-based epidemiology (WBE) was used in this study to monitor and estimate changes in antidepressant use under normal conditions (2019) and COVID-19 pandemic conditions (2020). Likewise, this study utilized wastewater-based epidemiology (WBE) to monitor and assess changing trends from the pre-pandemic period (2019) to COVID-19 pandemic conditions in antidepressant use (2020). Wastewater samples were collected from 11 cities in Turkey throughout six sampling periods covering the pre-pandemic and during-pandemic periods (June 2019-December 2020). Then, samples were analyzed via LC-MS/MS method. As a result, we observed that venlafaxine was the drug with the highest concentration (mean ± SD: 103.6 ± 112.1 mg/1000p/day). Moreover, city number 6 presented the highest venlafaxine use and the most dramatic increase during the pandemic period. Finally, this study revealed the potential of WBE to estimate the changing trends in mental health during the ongoing pandemic.
Subject(s)
COVID-19 , Antidepressive Agents/therapeutic use , COVID-19/epidemiology , Chromatography, Liquid , Humans , Pandemics , Tandem Mass Spectrometry , Turkey/epidemiology , Venlafaxine Hydrochloride , Wastewater/analysisABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the on-going COVID-19 pandemic. In March 2020, it was declared global pandemic, causing millions of deaths. An evident tendency of global pharmaceutical consumption due to COVID-19 pandemic should be seen worldwide, and this increase might suppose an environmental threat. Pharmaceuticals administrated at home or in pharmacies are excreted by faeces and urine after consumption, and wastewater treatment plants (WWTPs) are not able to remove all pharmaceuticals residues that eventually will end up in the aquatic media (rivers and sea). For this reason, analytical techniques such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) have become prominent to identify and quantify pharmaceuticals residues in aquatic matrices. In view of the scarce data on the occurrence of pharmaceuticals used as COVID-19 treatment, the aim of the present study was to evaluate the presence of these class of pharmaceuticals in river water which were dexamethasone, prednisone, ciprofloxacin, levofloxacin, remdesivir, ritonavir, lopinavir, acetaminophen, hydroxychloroquine, chloroquine and cloperastine, their toxicity in the aquatic environment using D. magna and to perform an exhaustive risk assessment in seven points of the Llobregat river basin. Dexamethasone, cloperastine and acetaminophen were the pharmaceuticals with higher concentrations, showing mean levels between 313 and 859 ng L-1.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , SARS-CoV-2 , Spain , Tandem Mass Spectrometry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Pandemics , COVID-19 Drug Treatment , Acetaminophen , Environmental Monitoring/methods , Pharmaceutical Preparations , Dexamethasone/analysisABSTRACT
Andrographis paniculata, a medicinal plant in Thailand national list of essential medicines, has been proposed for treatment of patients with mild to moderate coronavirus disease 2019. This study aims to develop a highly selective and sensitive liquid chromatography triple quadrupole tandem mass spectrometry method for quantitative determination of major diterpenoids in plasma and urine with application in pharmacokinetics. Chromatographic separation was performed on C18 column using a gradient mobile phase of water and acetonitrile. Mass spectrometry was analyzed using multiple reaction monitoring with negative ionization mode. This validated analytical method was very sensitive, less time consuming in analysis, and allowed the reliability and reproducibility on its application. The clinical pharmacokinetics was evaluated after single oral administration of A. paniculata extract (calculated as 60 mg of andrographolide). The disposition kinetics demonstrated that major diterpenoids could enter into systemic circulation, but they are mostly biotransformed (phase II) into conjugated glucuronide and sulfate metabolites. These metabolites are predominantly found in plasma and then extremely eliminated, in part through urinary excretion. The successful application of this analytical method supports its suitable uses in further clinical benefits after oral administration of A. paniculata.
Subject(s)
Andrographis , COVID-19 , Diterpenes , Humans , Chromatography, Liquid/methods , Reproducibility of Results , Tandem Mass Spectrometry/methods , Diterpenes/chemistry , Administration, Oral , Metabolic Networks and Pathways , Chromatography, High Pressure Liquid/methods , Andrographis/chemistryABSTRACT
Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this work, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft higher-energy C-trap dissociation (HCD) conditions, which reduces the coefficients of variability (CVs) of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intrascan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow, as well as the HCD workflow, with the highest sensitivity compared to traditional workflows. This was exemplified by a rapid quantification (13 min) of IgG1 Fc glycoforms from COVID-19 patients.