Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Molecules ; 26(21)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512511


This work describes an untargeted analytical approach for the screening, identification, and characterization of the trans-epithelial transport of green tea (Camellia sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease (PLpro) activity. After specific catechin extraction, a chromatographic separation obtained six fractions were carried out. The fractions were assessed in vitro against the PLpro target. Fraction 5 showed the highest inhibitory activity against the SARS-CoV-2 PLpro (IC50 of 0.125 µg mL-1). The untargeted characterization revealed that (-)-epicatechin-3-gallate (ECG) was the most abundant compound in the fraction and the primary molecule absorbed by differentiated Caco-2 cells. Results indicated that fraction 5 was approximately 10 times more active than ECG (IC50 value equal to 11.62 ± 0.47 µg mL-1) to inhibit the PLpro target. Overall, our findings highlight the synergistic effects of the various components of the crude extract compared to isolated ECG.

Catechin/pharmacology , Coronavirus Papain-Like Proteases/metabolism , Tea/metabolism , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/metabolism , Caco-2 Cells , Camellia sinensis/metabolism , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/metabolism , Coronavirus Papain-Like Proteases/drug effects , Epithelium/drug effects , Epithelium/metabolism , Humans , Mass Spectrometry/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Tea/chemistry , Tea/physiology
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1270089


Potential effects of tea and its constituents on SARS-CoV-2 infection were assessed in vitro. Infectivity of SARS-CoV-2 was decreased to 1/100 to undetectable levels after a treatment with black tea, green tea, roasted green tea, or oolong tea for 1 min. An addition of (-) epigallocatechin gallate (EGCG) significantly inactivated SARS-CoV-2, while the same concentration of theasinensin A (TSA) and galloylated theaflavins including theaflavin 3,3'-di-O-gallate (TFDG) had more remarkable anti-viral activities. EGCG, TSA, and TFDG at 1 mM, 40 µM, and 60 µM, respectively, which are comparable to the concentrations of these compounds in tea beverages, significantly reduced infectivity of the virus, viral RNA replication in cells, and secondary virus production from the cells. EGCG, TSA, and TFDG significantly inhibited interaction between recombinant ACE2 and RBD of S protein. These results suggest potential usefulness of tea in prevention of person-to-person transmission of the novel coronavirus.

Antiviral Agents/pharmacology , Biflavonoids/chemistry , Catechin/chemistry , Gallic Acid/analogs & derivatives , SARS-CoV-2/physiology , Tea/chemistry , Virus Replication/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , Biflavonoids/pharmacology , COVID-19/pathology , COVID-19/virology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Gallic Acid/chemistry , Gallic Acid/pharmacology , Humans , Protein Interaction Maps/drug effects , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Tea/metabolism , Vero Cells