Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS One ; 16(1): e0245688, 2021.
Article in English | MEDLINE | ID: covidwho-1043475

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has made well-fitting face masks a critical piece of protective equipment for healthcare workers and civilians. While the importance of wearing face masks has been acknowledged, there remains a lack of understanding about the role of good fit in rendering protective equipment useful. In addition, supply chain constraints have caused some organizations to abandon traditional quantitative or/and qualitative fit testing, and instead, have implemented subjective fit checking. Our study seeks to quantitatively evaluate the level of fit offered by various types of masks, and most importantly, assess the accuracy of implementing fit checks by comparing fit check results to quantitative fit testing results. METHODS: Seven participants first evaluated N95 and KN95 respirators by performing a fit check. Participants then underwent quantitative fit testing wearing five N95 respirators, a KN95 respirator, a surgical mask, and fabric masks. RESULTS: N95 respirators offered higher degrees of protection than the other categories of masks tested; however, it should be noted that most N95 respirators failed to fit the participants adequately. Fit check responses had poor correlation with quantitative fit factor scores. KN95, surgical, and fabric masks achieved low fit factor scores, with little protective difference recorded between respiratory protection options. In addition, small facial differences were observed to have a significant impact on quantitative fit. CONCLUSION: Fit is critical to the level of protection offered by respirators. For an N95 respirator to provide the promised protection, it must fit the participant. Performing a fit check via NHS self-assessment guidelines was an unreliable way of determining fit.


Subject(s)
/prevention & control , Masks , Textiles , Adolescent , Adult , Aged , Female , Humans , Male , Masks/standards , Masks/virology , Middle Aged , /virology , Occupational Exposure/prevention & control , Textiles/virology , Young Adult
2.
ACS Appl Mater Interfaces ; 12(44): 49442-49451, 2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-889127

ABSTRACT

Cotton fabrics with durable and reusable daylight-induced antibacterial/antiviral functions were developed by using a novel fabrication process, which employs strong electrostatic interaction between cationic cotton fibers and anionic photosensitizers. The cationic cotton contains polycationic short chains produced by a self-propagation of 2-diehtylaminoehtyl chloride (DEAE-Cl) on the surface of cotton fibers. Then, the fabric (i.e., polyDEAE@cotton) can be readily functionalized with anionic photosensitizers like rose Bengal and sodium 2-anthraquinone sulfate to produce biocidal reactive oxygen species (ROS) under light exposure and consequently provide the photo-induced biocidal functions. The biocidal properties of the photo-induced fabrics (PIFs) were demonstrated by ROS production measurements, bactericidal performance against bacteria (e.g., E coli and L. innocua), and antiviral results against T7 bacteriophage. The PIFs achieved 99.9999% (6 log) reductions against bacteria and the bacteriophage within 60 min of daylight exposure. Moreover, the PIFs showcase excellent washability and photostability, making them ideal materials for reusable face masks and protective suits with improved biological protections compared with traditional PPE. This work demonstrated that the cationized cotton could serve as a platform for different functionalization applications, and the resulting fiber materials could inspire the development of reusable and sustainable PPE with significant bioprotective properties to fight the COVID-19 pandemic as well as the spread of other contagious diseases.


Subject(s)
Coronavirus Infections/prevention & control , Gossypium/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Textiles/virology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Clothing/standards , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gossypium/chemistry , Gossypium/microbiology , Humans , Hydrophobic and Hydrophilic Interactions , Light , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Textiles/microbiology
3.
ACS Nano ; 14(10): 14017-14025, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-779933

ABSTRACT

In March of 2020, the World Health Organization declared a pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The pandemic led to a shortage of N95-grade filtering facepiece respirators (FFRs), especially surgical-grade N95 FFRs for protection of healthcare professionals against airborne transmission of SARS-CoV-2. We and others have previously reported promising decontamination methods that may be applied to the recycling and reuse of FFRs. In this study we tested disinfection of three viruses, including SARS-CoV-2, dried on a piece of meltblown fabric, the principal component responsible for filtering of fine particles in N95-level FFRs, under a range of temperatures (60-95 °C) at ambient or 100% relative humidity (RH) in conjunction with filtration efficiency testing. We found that heat treatments of 75 °C for 30 min or 85 °C for 20 min at 100% RH resulted in efficient decontamination from the fabric of SARS-CoV-2, human coronavirus NL63 (HCoV-NL63), and another enveloped RNA virus, chikungunya virus vaccine strain 181/25 (CHIKV-181/25), without lowering the meltblown fabric's filtration efficiency.


Subject(s)
Disinfection/methods , Hot Temperature , Humidity , Masks/virology , Textiles/virology , Betacoronavirus/pathogenicity , Masks/standards , Polypropylenes/chemistry , Textiles/standards
4.
Int J Hyg Environ Health ; 229: 113582, 2020 08.
Article in English | MEDLINE | ID: covidwho-663875

ABSTRACT

The recent outbreak of the coronavirus disease (COVID-19) is causing a shortage of personal protective equipment (PPE) in different countries around the world. Because the coronavirus can transmit through droplets and aerosols, facemasks and N95 respirators that require complex certification, are urgently needed. Given the situation, the U.S. Centers for Disease Control and Prevention (CDC) recommends that "in settings where facemasks are not available, healthcare personnel might use homemade masks (e.g., bandana, scarf) for the care of patients with COVID-19 as a last resort." Although aerosols and droplets can be removed through the fibers of fabrics through a series of filtration mechanisms, their filtration performances have not been evaluated in detail. Moreover, there are a series of non-medical materials available on the market, such as household air filters, coffee filters, and different types of fabrics, which may be useful when facemasks and respirators are not available. In this study, we comprehensively evaluated the overall and size-dependent filtration performances of non-medical materials. The experiments were conducted under different face velocities to study its influence on size-dependent filtration performances. The flow resistance across these filter materials is measured as an indicator of the breathability of the materials. The results illustrate that multiple layers of household air filters are able to achieve similar filtration efficiencies compared to the N95 material without causing a significant increase in flow resistance. Considering that these air filters may shed micrometer fibers during the cutting and folding processes, it is recommended that these filters should be inserted in multiple layers of fabrics when manufacturing facemasks or respirators.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/prevention & control , Filtration/methods , Masks/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Aerosols/analysis , Humans , Inhalation Exposure/prevention & control , Materials Testing , Textiles/virology , United States
5.
ACS Nano ; 14(7): 9188-9200, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-614523

ABSTRACT

Filtration efficiency (FE), differential pressure (ΔP), quality factor (QF), and construction parameters were measured for 32 cloth materials (14 cotton, 1 wool, 9 synthetic, 4 synthetic blends, and 4 synthetic/cotton blends) used in cloth masks intended for protection from the SARS-CoV-2 virus (diameter 100 ± 10 nm). Seven polypropylene-based fiber filter materials were also measured including surgical masks and N95 respirators. Additional measurements were performed on both multilayered and mixed-material samples of natural, synthetic, or natural-synthetic blends to mimic cloth mask construction methods. Materials were microimaged and tested against size selected NaCl aerosol with particle mobility diameters between 50 and 825 nm. Three of the top five best performing samples were woven 100% cotton with high to moderate yarn counts, and the other two were woven synthetics of moderate yarn counts. In contrast to recently published studies, samples utilizing mixed materials did not exhibit a significant difference in the measured FE when compared to the product of the individual FE for the components. The FE and ΔP increased monotonically with the number of cloth layers for a lightweight flannel, suggesting that multilayered cloth masks may offer increased protection from nanometer-sized aerosol with a maximum FE dictated by breathability (i.e., ΔP).


Subject(s)
Coronavirus Infections/prevention & control , Masks/standards , Pandemics/prevention & control , Personal Protective Equipment/standards , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Textiles/standards , Aerosols/chemistry , Betacoronavirus/pathogenicity , Filtration , Humans , Masks/virology , Nanoparticles/chemistry , Nanoparticles/virology , Personal Protective Equipment/virology , Respiratory Protective Devices/virology , Textiles/adverse effects , Textiles/virology
SELECTION OF CITATIONS
SEARCH DETAIL