ABSTRACT
The COVID-19 outbreak caused by SARS-CoV-2 challenges the medical system by interfering with routine therapies for many patients with chronic diseases. In patients with cancer receiving immune checkpoint inhibitors (ICIs), difficulties also arise from the incomplete understanding of the intricate interplay between their routine treatment and pathogenesis of the novel virus. By referring to previous ICI-based investigations, we speculate that ICIs themselves are not linked to high-infection risks of respiratory diseases or inflammation-related adverse effects in patients with cancer. Moreover, ICI treatment may even enhance coronavirus clearance in some patients with malignant tumor by boosting antiviral T-cell responsiveness. However, the 'explosive' inflammation during COVID-19 in some ICI-treated patients with cancer was illustrated as exuberant immunopathological damage or even death. In case of the COVID-19 immunopathogenesis fueled by ICIs, we propose a regular monitor of pathogenic T-cell subsets and their exhaustion marker expression (eg, Th17 and interleukin (IL)-6-producing Th1 subsets with surface programmed death 1 expression) to guide the usage of ICI. Here we aimed to address these considerations, based on available literature and experience from our practice, that may assist with the decision-making of ICI administration during the pandemic.
Subject(s)
Antineoplastic Agents, Immunological/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/prevention & control , Neoplasms/drug therapy , SARS-CoV-2/immunology , Antineoplastic Agents, Immunological/therapeutic use , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , Clinical Decision-Making , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Drug Monitoring , Humans , Lung/diagnostic imaging , Neoplasms/blood , Neoplasms/immunology , Pandemics , Patient Selection , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2/isolation & purification , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Tomography, X-Ray ComputedABSTRACT
The pandemic of coronavirus disease 2019 (COVID-19), a disease which causes severe lung injury and multiple organ damage, presents an urgent need for new drugs. The case severity and fatality of COVID-19 are associated with excessive inflammation, namely, a cytokine storm. Metformin, a widely used drug to treat type 2 diabetes (T2D) mellitus and metabolic syndrome, has immunomodulatory activity that reduces the production of proinflammatory cytokines using macrophages and causes the formation of neutrophil extracellular traps (NETs). Metformin also inhibits the cytokine production of pathogenic Th1 and Th17 cells. Importantly, treatment with metformin alleviates various lung injuries in preclinical animal models. In addition, a recent proteomic study revealed that metformin has the potential to directly inhibit SARS-CoV-2 infection. Furthermore, retrospective clinical studies have revealed that metformin treatment reduces the mortality of T2D with COVID-19. Therefore, metformin has the potential to be repurposed to treat patients with COVID-19 at risk of developing severe illness. This review summarizes the immune pathogenesis of SARS-CoV-2 and addresses the effects of metformin on inhibiting cytokine storms and preventing SARS-CoV-2 infection, as well as its side effects.
Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Immunologic Factors/therapeutic use , Lung Injury/drug therapy , Metformin/therapeutic use , Pneumonia, Viral/drug therapy , Animals , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/antagonists & inhibitors , Drug Repositioning/methods , Extracellular Traps/drug effects , Humans , Immunologic Factors/adverse effects , Immunologic Factors/pharmacology , Inflammation/drug therapy , Macrophages/drug effects , Macrophages/immunology , Metformin/adverse effects , Metformin/pharmacology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , COVID-19 Drug TreatmentABSTRACT
The COVID-19 pandemic caused by SARS-CoV-2 has far-reaching direct and indirect medical consequences. These include both the course and treatment of diseases. It is becoming increasingly clear that infections with SARS-CoV-2 can cause considerable immunological alterations, which particularly also affect pathogenetically and/or therapeutically relevant factors. Against this background we summarize here the current state of knowledge on the interaction of SARS-CoV-2/COVID-19 with mediators of the acute phase of inflammation (TNF, IL-1, IL-6), type 1 and type 17 immune responses (IL-12, IL-23, IL-17, IL-36), type 2 immune reactions (IL-4, IL-13, IL-5, IL-31, IgE), B-cell immunity, checkpoint regulators (PD-1, PD-L1, CTLA4), and orally druggable signaling pathways (JAK, PDE4, calcineurin). In addition, we discuss in this context non-specific immune modulation by glucocorticosteroids, methotrexate, antimalarial drugs, azathioprine, dapsone, mycophenolate mofetil and fumaric acid esters, as well as neutrophil granulocyte-mediated innate immune mechanisms. From these recent findings we derive possible implications for the therapeutic modulation of said immunological mechanisms in connection with SARS-CoV-2/COVID-19. Although, of course, the greatest care should be taken with patients with immunologically mediated diseases or immunomodulating therapies, it appears that many treatments can also be carried out during the COVID-19 pandemic; some even appear to alleviate COVID-19.
Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/prevention & control , Cytokines/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , COVID-19/therapy , Cytokine Release Syndrome/immunology , Humans , Immunotherapy , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunologyABSTRACT
Since its emergence in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global pandemic within a matter of months. While subunit vaccines are one of the prominent options for combating coronavirus disease 2019 (COVID-19), the immunogenicity of spike protein-based antigens remains unknown. When immunized in mice, the S1 domain induced much higher IgG and IgA antibody levels than the receptor-binding domain (RBD) and more efficiently neutralized SARS-CoV-2 when adjuvanted with alum. It is inferred that a large proportion of these neutralization epitopes are located in the S1 domain but outside the RBD and that some of these are spatial epitopes. This finding indicates that expression systems with posttranslational modification abilities are important to maintain the natural configurations of recombinant spike protein antigens and are critical for effective COVID-19 vaccines. Further, adjuvants prone to a Th1 response should be considered for S1-based subunit COVID-19 vaccines to reduce the potential risk of antibody-dependent enhancement of infection.