Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
2.
Pharmacol Res ; 157: 104820, 2020 07.
Article in English | MEDLINE | ID: covidwho-1318923

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has become a huge threaten to global health, which raise urgent demand of developing efficient therapeutic strategy. The aim of the present study is to dissect the chemical composition and the pharmacological mechanism of Qingfei Paidu Decoction (QFPD), a clinically used Chinese medicine for treating COVID-19 patients in China. Through comprehensive analysis by liquid chromatography coupled with high resolution mass spectrometry (MS), a total of 129 compounds of QFPD were putatively identified. We also constructed molecular networking of mass spectrometry data to classify these compounds into 14 main clusters, in which exhibited specific patterns of flavonoids (45 %), glycosides (15 %), carboxylic acids (10 %), and saponins (5 %). The target network model of QFPD, established by predicting and collecting the targets of identified compounds, indicated a pivotal role of Ma Xing Shi Gan Decoction (MXSG) in the therapeutic efficacy of QFPD. Supportively, through transcriptomic analysis of gene expression after MXSG administration in rat model of LPS-induced pneumonia, the thrombin and Toll-like receptor (TLR) signaling pathway were suggested to be essential pathways for MXSG mediated anti-inflammatory effects. Besides, changes in content of major compounds in MXSG during decoction were found by the chemical analysis. We also validate that one major compound in MXSG, i.e. glycyrrhizic acid, inhibited TLR agonists induced IL-6 production in macrophage. In conclusion, the integration of in silico and experimental results indicated that the therapeutic effects of QFPD against COVID-19 may be attributed to the anti-inflammatory effects of MXSG, which supports the rationality of the compatibility of TCM.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Pneumonia, Viral/drug therapy , Animals , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , COVID-19 , Cells, Cultured , Computer Simulation , Coronavirus Infections/genetics , Gene Expression/drug effects , Glycyrrhizic Acid/pharmacology , Humans , Interleukin-6/metabolism , Lipopeptides/antagonists & inhibitors , Lipopeptides/pharmacology , Lipopolysaccharides , Male , Pandemics , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia, Viral/genetics , Rats , SARS-CoV-2 , Signal Transduction/drug effects , Thrombin/metabolism , Toll-Like Receptors/metabolism
3.
J Thromb Thrombolysis ; 52(3): 746-753, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1263169

ABSTRACT

Patients with Coronavirus Disease-2019 (COVID-19) have haemostatic dysfunction and are at higher risk of thrombotic complications. Although age is a major risk factor for outcome impairment in COVID-19, its impact on coagulative patterns here is still unclear. We investigated the association of Endogenous Thrombin Potential (ETP) with thrombotic and haemorrhagic events according to different ages in patients admitted for COVID-19. A total of 27 patients with COVID-19-related pneumonia, without need for intensive care unit admission or mechanical ventilation at hospital presentation, and 24 controls with non-COVID-19 pneumonia were prospectively included. ETP levels were measured on admission. Patients were evaluated for major adverse cardiovascular events (MACE: cardiovascular death, myocardial infarction, stroke, transient ischemic attack, venous thromboembolism) and bleeding complications [according to Bleeding Academic Research Consortium (BARC) definition] during in-hospital stay. COVID-19 patients had similar ETP levels compared to controls (AUC 93 ± 24% vs 99 ± 21%, p = 0.339). In the COVID-19 cohort, patients with in-hospital MACE showed lower ETP levels on admission vs those without (AUC 86 ± 14% vs 95 ± 27%, p = 0.041), whereas ETP values were comparable in patients with or without bleeding (AUC 82 ± 16% vs 95 ± 26%, p = 0.337). An interaction between age and ETP levels for both MACE and bleeding complications was observed, where a younger age was associated with an inverse relationship between ETP values and adverse event risk (pint 0.018 for MACE and 0.050 for bleeding). Patients with COVID-19 have similar thrombin potential on admission compared to those with non-COVID-19 pneumonia. In younger COVID-19 patients, lower ETP levels were associated with a higher risk of both MACE and bleeding.


Subject(s)
COVID-19/complications , Hemostasis , Hospitalization , Thrombin/metabolism , Thrombosis/etiology , Age Factors , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Case-Control Studies , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Risk Assessment , Risk Factors , Thrombosis/blood , Thrombosis/mortality , Thrombosis/therapy , Time Factors
4.
Exp Biol Med (Maywood) ; 246(6): 688-694, 2021 03.
Article in English | MEDLINE | ID: covidwho-971191

ABSTRACT

Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.


Subject(s)
Blood Coagulation/physiology , COVID-19/pathology , Disseminated Intravascular Coagulation/pathology , Receptor, PAR-1/metabolism , Thrombin/metabolism , Anticoagulants/therapeutic use , Blood Coagulation/drug effects , Blood Coagulation Factors/metabolism , COVID-19/drug therapy , Disseminated Intravascular Coagulation/drug therapy , Humans , Pulmonary Embolism/pathology , Pulmonary Embolism/prevention & control , Receptor, PAR-1/antagonists & inhibitors , Receptors, Cell Surface/metabolism , SARS-CoV-2 , Venous Thrombosis/pathology , Venous Thrombosis/prevention & control
6.
J Thromb Haemost ; 18(9): 2215-2219, 2020 09.
Article in English | MEDLINE | ID: covidwho-645249

ABSTRACT

BACKGROUND: Thirty percent of Covid-19 patients admitted to intensive care units present with thrombotic complications despite thromboprophylaxis. Bed rest, obesity, hypoxia, coagulopathy, and acute excessive inflammation are potential mechanisms reported by previous studies. Better understanding of the underlying mechanisms leading to thrombosis is crucial for developing more appropriate prophylaxis and treatment strategies. OBJECTIVE: We aimed to assess fibrinolytic activity and thrombin generation in 78 Covid-19 patients. PATIENTS AND METHODS: Forty-eight patients admitted to the intensive care unit and 30 patients admitted to the internal medicine department were included in the study. All patients received thromboprophylaxis. We measured fibrinolytic parameters (tissue plasminogen activator, PAI-1, thrombin activatable fibrinolysis inhibitor, alpha2 anti-plasmin, and tissue plasminogen activator-modified ROTEM device), thrombin generation, and other coagulation tests (D-dimer, fibrinogen, factor VIII, antithrombin). RESULTS AND CONCLUSIONS: We observed two key findings: a high thrombin generation capacity that remained within normal values despite heparin therapy and a hypofibrinolysis mainly associated with increased PAI-1 levels. A modified ROTEM is able to detect both hypercoagulability and hypofibrinolysis simultaneously in Covid-19 patients with thrombosis.


Subject(s)
COVID-19/blood , COVID-19/complications , Fibrinolysis , Thrombin/metabolism , Thrombosis/complications , Adult , Aged , Blood Coagulation , Blood Coagulation Factors/metabolism , Blood Coagulation Tests , COVID-19 Nucleic Acid Testing , Critical Care , Female , Humans , Inflammation , Intensive Care Units , Male , Middle Aged , Renal Replacement Therapy , Respiration, Artificial , Risk , Venous Thromboembolism/complications
7.
Paediatr Respir Rev ; 35: 20-24, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-593671

ABSTRACT

Since the initial description in 2019, the novel coronavirus SARS-Cov-2 infection (COVID-19) pandemic has swept the globe. The most severe form of the disease presents with fever and shortness of breath, which rapidly deteriorates to respiratory failure and acute lung injury (ALI). COVID-19 also presents with a severe coagulopathy with a high rate of venous thromboembiolism. In addition, autopsy studies have revealed co-localized thrombosis and inflammation, which is the signature of thromboinflammation, within the pulmonary capillary vasculature. While the majority of published data is on adult patients, there are parallels to pediatric patients. In our experience as a COVID-19 epicenter, children and young adults do develop both the coagulopathy and the ALI of COVID-19. This review will discuss COVID-19 ALI from a hematological perspective with discussion of the distinct aspects of coagulation that are apparent in COVID-19. Current and potential interventions targeting the multiple thromboinflammatory mechanisms will be discussed.


Subject(s)
Acute Lung Injury/blood , Coronavirus Infections/blood , Inflammation/blood , Pneumonia, Viral/blood , Thrombosis/blood , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/physiopathology , Anticoagulants/therapeutic use , Antithrombins/therapeutic use , Betacoronavirus , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/physiopathology , COVID-19 , Capillaries/immunology , Capillaries/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , Factor Xa Inhibitors/therapeutic use , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/physiopathology , Pandemics , Platelet Activation , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Pulmonary Embolism/blood , Pulmonary Embolism/immunology , Pulmonary Embolism/physiopathology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thrombosis/drug therapy , Thrombosis/immunology , Thrombosis/physiopathology
8.
Molecules ; 25(11)2020 May 29.
Article in English | MEDLINE | ID: covidwho-436971

ABSTRACT

The coronavirus disease, COVID-19, caused by the novel coronavirus SARS-CoV-2, which first emerged in Wuhan, China and was made known to the World in December 2019 turned into a pandemic causing more than 126,124 deaths worldwide up to April 16th, 2020. It has 79.5% sequence identity with SARS-CoV-1 and the same strategy for host cell invasion through the ACE-2 surface protein. Since the development of novel drugs is a long-lasting process, researchers look for effective substances among drugs already approved or developed for other purposes. The 3D structure of the SARS-CoV-2 main protease was compared with the 3D structures of seven proteases, which are drug targets, and docking analysis to the SARS-CoV-2 protease structure of thirty four approved and on-trial protease inhibitors was performed. Increased 3D structural similarity between the SARS-CoV-2 main protease, the HCV protease and α-thrombin was found. According to docking analysis the most promising results were found for HCV protease, DPP-4, α-thrombin and coagulation Factor Xa known inhibitors, with several of them exhibiting estimated free binding energy lower than -8.00 kcal/mol and better prediction results than reference compounds. Since some of the compounds are well-tolerated drugs, the promising in silico results may warrant further evaluation for viral anticipation. DPP-4 inhibitors with anti-viral action may be more useful for infected patients with diabetes, while anti-coagulant treatment is proposed in severe SARS-CoV-2 induced pneumonia.


Subject(s)
Anticoagulants/chemistry , Antiviral Agents/chemistry , Betacoronavirus/drug effects , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Anticoagulants/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/enzymology , Betacoronavirus/genetics , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Factor Xa/chemistry , Factor Xa/genetics , Factor Xa/metabolism , Hepacivirus/chemistry , Hepacivirus/enzymology , Hepacivirus/genetics , Humans , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2 , Sequence Alignment , Structural Homology, Protein , Substrate Specificity , Thermodynamics , Thrombin/antagonists & inhibitors , Thrombin/chemistry , Thrombin/genetics , Thrombin/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...