Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Immunol ; 11: 604759, 2020.
Article in English | MEDLINE | ID: covidwho-1389169

ABSTRACT

Objective: To first describe and estimate the potential pathogenic role of Ig4 autoantibodies in complement-mediated thrombotic microangiopathy (TMA) in a patient with IgG4-related disease (IgG4-RD). Methods: This study is a case report presenting a retrospective review of the patient's medical chart. Plasma complement C3 and C4 levels, immunoglobulin isotypes and subclasses were determined by nephelometry, the complement pathways' activity (CH50, AP50, MBL) using WIESLAB® Complement System assays. Human complement factor H levels, anti-complement factor H auto-antibodies were analyzed by ELISA, using HRP-labeled secondary antibodies specific for human IgG, IgG4, and IgA, respectively. Genetic analyses were performed by exome sequencing of 14 gens implicated in complement disorders, as well as multiplex ligation-dependent probe amplification looking specifically for CFH, CFHR1-2-3, and 5. Results: Our brief report presents the first case of IgG4-RD with complement-mediated TMA originating from both pathogenic CFHR 1 and CFHR 4 genes deletions, and inhibitory anti-complement factor H autoantibodies of the IgG4 subclass. Remission was achieved with plasmaphereses, corticosteroids, and cyclophosphamide. Following remission, the patient was diagnosed with lymphocytic meningitis and SARS-CoV-2 pneumonia with an uneventful recovery. Conclusion: IgG4-RD can be associated with pathogenic IgG4 autoantibodies. Genetic predisposition such as CFHR1 and CFHR4 gene deletions enhance the susceptibility to the formation of inhibitory anti-Factor H IgG4 antibodies.


Subject(s)
Apolipoproteins/genetics , Atypical Hemolytic Uremic Syndrome/genetics , Autoantibodies/immunology , Complement C3b Inactivator Proteins/genetics , Complement Factor H/immunology , Immunoglobulin G4-Related Disease/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/pathology , Female , Gene Deletion , Genetic Predisposition to Disease/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/pathology , Middle Aged , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology
2.
J Intern Med ; 290(3): 655-665, 2021 09.
Article in English | MEDLINE | ID: covidwho-1297793

ABSTRACT

IMPORTANCE: Assessment of the causative association between the COVID-19 and cause of death has been hampered by limited availability of systematically performed autopsies. We aimed to present autopsy-confirmed causes of death in patients who died with COVID-19 and to assess the association between thrombosis and diffuse alveolar damage consistent with COVID-19 (DAD). METHODS: Consecutive forensic (n = 60) and clinical (n = 42) autopsies with positive post-mortem SARS-CoV-2 PCR in lungs (age 73 ± 14 years, 50% men) were included. The cause of death analysis was based on a review of medical records and histological reports. Thrombotic phenomena in lungs were defined as pulmonary thromboembolism (PE), thrombosis in pulmonary artery branches or microangiopathy in capillary vessels. RESULTS: COVID-19 caused or contributed to death in 71% of clinical and 83% of forensic autopsies, in whom significant DAD was observed. Of the patients with COVID-19 as the primary cause of death, only 19% had no thrombotic phenomena in the lungs, as opposed to 38% amongst those with COVID-19 as a contributing cause of death and 54% amongst patients whose death was not related to COVID-19 (p = 0.002). PE was observed in 5 patients. Two patients fulfilled the criteria for lymphocyte myocarditis. CONCLUSIONS: Vast majority of all PCR-positive fatalities, including out-of-hospital deaths, during the SARS-CoV-2 pandemic were related to DAD caused by COVID-19. Pulmonary artery thrombosis and microangiopathy in pulmonary tissue were common and associated with the presence of DAD, whilst venous PE was rarely observed. Histology-confirmed lymphocyte myocarditis was a rare finding.


Subject(s)
COVID-19/mortality , COVID-19/pathology , Cause of Death , Pulmonary Alveoli/pathology , Pulmonary Embolism/pathology , Thromboembolism/pathology , Aged , Autopsy , Capillaries/pathology , Female , Humans , Lymphocytes , Male , Middle Aged , Myocarditis/pathology , Pandemics , Polymerase Chain Reaction , Pulmonary Artery/pathology , SARS-CoV-2 , Thrombotic Microangiopathies/pathology
3.
Medicina (Kaunas) ; 57(3)2021 Mar 11.
Article in English | MEDLINE | ID: covidwho-1167651

ABSTRACT

Renal biopsy is useful to better understand the histological pattern of a lesion (glomerular, tubulointerstitial, and vascular) and the pathogenesis that leads to kidney failure. The potential impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the kidneys is still undetermined, and a variety of lesions are seen in the kidney tissue of coronavirus disease patients. This review is based on the morphological findings of patients described in case reports and a series of published cases. A search was conducted on MEDLINE and PubMed of case reports and case series of lesions in the presence of non-critical infection by SARS-CoV-2 published until 15/09/2020. We highlight the potential of the virus directly influencing the damage or the innate and adaptive immune response activating cytokine and procoagulant cascades, in addition to the genetic component triggering glomerular diseases, mainly collapsing focal segmental glomerulosclerosis, tubulointerstitial, and even vascular diseases. Kidney lesions caused by SARS-CoV-2 are frequent and have an impact on morbidity and mortality; thus, studies are needed to assess the morphological kidney changes and their mechanisms and may help define their spectrum and immediate or long-term impact.


Subject(s)
Acute Kidney Injury/pathology , COVID-19/pathology , Glomerulonephritis/pathology , Kidney/pathology , Thrombotic Microangiopathies/pathology , Acute Kidney Injury/blood , Acute Kidney Injury/immunology , Adaptive Immunity/immunology , Arteriosclerosis/immunology , Arteriosclerosis/pathology , COVID-19/blood , COVID-19/immunology , Cytokines/immunology , Glomerulonephritis/immunology , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/pathology , Glomerulosclerosis, Focal Segmental/immunology , Glomerulosclerosis, Focal Segmental/pathology , Humans , Immunity, Innate/immunology , Infarction/immunology , Infarction/pathology , Kidney/blood supply , Kidney/immunology , Kidney Cortex Necrosis/immunology , Kidney Cortex Necrosis/pathology , Nephritis, Interstitial/immunology , Nephritis, Interstitial/pathology , Nephrosis, Lipoid/immunology , Nephrosis, Lipoid/pathology , Rhabdomyolysis , SARS-CoV-2 , Thrombophilia/blood , Thrombotic Microangiopathies/immunology
4.
Front Immunol ; 11: 610696, 2020.
Article in English | MEDLINE | ID: covidwho-993359

ABSTRACT

Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.


Subject(s)
ADAMTS13 Protein/immunology , COVID-19/immunology , Extracellular Traps/immunology , SARS-CoV-2/immunology , Thrombosis/immunology , von Willebrand Factor/immunology , Acute Disease , Brain Ischemia/immunology , Brain Ischemia/pathology , Brain Ischemia/virology , COVID-19/pathology , Humans , Stroke/immunology , Stroke/pathology , Stroke/virology , Thrombosis/pathology , Thrombosis/virology , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/virology
5.
Adv Chronic Kidney Dis ; 27(5): 365-376, 2020 09.
Article in English | MEDLINE | ID: covidwho-975047

ABSTRACT

Acute kidney injury (AKI) is common among hospitalized patients with Coronavirus Infectious Disease 2019 (COVID-19), with the occurrence of AKI ranging from 0.5% to 80%. The variability in the occurrence of AKI has been attributed to the difference in geographic locations, race/ethnicity, and severity of illness. AKI among hospitalized patients is associated with increased length of stay and in-hospital deaths. Even patients with AKI who survive to hospital discharge are at risk of developing chronic kidney disease or end-stage kidney disease. An improved knowledge of the pathophysiology of AKI in COVID-19 is crucial to mitigate and manage AKI and to improve the survival of patients who developed AKI during COVID-19. The goal of this article is to provide our current understanding of the etiology and the pathophysiology of AKI in the setting of COVID-19.


Subject(s)
Acute Kidney Injury/metabolism , COVID-19/metabolism , Cytokines/metabolism , Glomerulonephritis/metabolism , Thrombotic Microangiopathies/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Anti-Bacterial Agents/adverse effects , Antiviral Agents/adverse effects , Apolipoprotein L1/genetics , Ascorbic Acid/adverse effects , Azotemia/metabolism , Azotemia/pathology , Azotemia/physiopathology , COVID-19/drug therapy , COVID-19/pathology , COVID-19/physiopathology , Disease Progression , Glomerulonephritis/pathology , Glomerulonephritis/physiopathology , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/physiopathology , Hospital Mortality , Humans , Kidney Tubules, Proximal/injuries , Length of Stay , Myoglobin/metabolism , Nephritis, Interstitial/metabolism , Nephritis, Interstitial/pathology , Nephritis, Interstitial/physiopathology , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Nephrosis, Lipoid/physiopathology , Renal Insufficiency, Chronic , Rhabdomyolysis/metabolism , SARS-CoV-2 , Severity of Illness Index , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/physiopathology , Vitamins/adverse effects
7.
Pathol Res Pract ; 216(10): 153228, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-779554

ABSTRACT

BACKGROUND: Since the outbreak of the novel coronavirus disease-2019 (COVID-19) in December 2019, limited studies have investigated the histopathologic findings of patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). MATERIAL AND METHODS: This study was conducted on 31 deceased patients who were hospitalized for COVID-19 in a tertiary hospital in Tehran, Iran. A total of 52 postmortem tissue biopsy samples were obtained from the lungs and liver of decedents. Clinical characteristics, laboratory data, and microscopic features were evaluated. Reverse transcription polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 was performed on specimens obtained from nasopharyngeal swabs and tissue biopsies. RESULTS: The median age of deceased patients was 66 years (range, 30-87 years) and 25 decedents (81 %) were male. The average interval from symptom onset to death was 13 days (range, 6-34 days). On histopathologic examination of the lung specimens, diffuse alveolar damage and thrombotic microangiopathy were the most common findings (80 % and 60 %, respectively). Liver specimens mainly showed macrovesicular steatosis, portal lymphoplasmacytic inflammation and passive congestion. No definitive viral inclusions were observed in any of the specimens. In addition, 92 % of lung tissue samples tested positive for SARS-CoV-2 by RT-PCR. CONCLUSIONS: Further studies are needed to investigate whether SARS-CoV-2 causes direct cytopathic changes in various organs of the human body.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Pulmonary Alveoli/pathology , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/virology , Adult , Aged , Aged, 80 and over , Autopsy , Betacoronavirus , Biopsy , COVID-19 , Female , Humans , Liver/pathology , Lung/pathology , Male , Middle Aged , Pandemics , SARS-CoV-2
8.
J Clin Invest ; 130(11): 5674-5676, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-760323

ABSTRACT

In a stunningly short period of time, the unexpected coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned the unprepared world topsy-turvy. Although the rapidity with which the virus struck was indeed overwhelming, scientists throughout the world have been up to the task of deciphering the mechanisms by which SARS-CoV-2 induces the multisystem and multiorgan inflammatory responses that, collectively, contribute to the high mortality rate in affected individuals. In this issue of the JCI, Skendros and Mitsios et al. is one such team who report that the complement system plays a substantial role in creating the hyperinflammation and thrombotic microangiopathy that appear to contribute to the severity of COVID-19. In support of the hypothesis that the complement system along with neutrophils and platelets contributes to COVID-19, the authors present empirical evidence showing that treatment with the complement inhibitor compstatin Cp40 inhibited the expression of tissue factor in neutrophils. These results confirm that the complement axis plays a critical role and suggest that targeted therapy using complement inhibitors is a potential therapeutic option to treat COVID-19-induced inflammation.


Subject(s)
Betacoronavirus/metabolism , Complement Activation/drug effects , Coronavirus Infections , Pandemics , Peptides, Cyclic/pharmacology , Pneumonia, Viral , Thromboplastin/biosynthesis , Thrombotic Microangiopathies , Blood Platelets/metabolism , Blood Platelets/pathology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Neutrophils/metabolism , Neutrophils/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , SARS-CoV-2 , Severity of Illness Index , Thrombotic Microangiopathies/drug therapy , Thrombotic Microangiopathies/metabolism , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/virology
9.
Nat Rev Rheumatol ; 16(10): 581-589, 2020 10.
Article in English | MEDLINE | ID: covidwho-690837

ABSTRACT

Reports of widespread thromboses and disseminated intravascular coagulation (DIC) in patients with coronavirus disease 19 (COVID-19) have been rapidly increasing in number. Key features of this disorder include a lack of bleeding risk, only mildly low platelet counts, elevated plasma fibrinogen levels, and detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and complement components in regions of thrombotic microangiopathy (TMA). This disorder is not typical DIC. Rather, it might be more similar to complement-mediated TMA syndromes, which are well known to rheumatologists who care for patients with severe systemic lupus erythematosus or catastrophic antiphospholipid syndrome. This perspective has critical implications for treatment. Anticoagulation and antiviral agents are standard treatments for DIC but are gravely insufficient for any of the TMA disorders that involve disorders of complement. Mediators of TMA syndromes overlap with those released in cytokine storm, suggesting close connections between ineffective immune responses to SARS-CoV-2, severe pneumonia and life-threatening microangiopathy.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Thrombosis/immunology , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Complement System Proteins/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/immunology , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/pathology , Disseminated Intravascular Coagulation/virology , Fibrinogen/analysis , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunosuppressive Agents/therapeutic use , Pandemics , Plasma Exchange/methods , Platelet Count/methods , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Thrombosis/drug therapy , Thrombosis/pathology , Thrombosis/virology , Thrombotic Microangiopathies/drug therapy , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/virology
SELECTION OF CITATIONS
SEARCH DETAIL