Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Chem Biol ; 29(2): 239-248.e4, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1347527

ABSTRACT

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.


Subject(s)
Acetates/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Membrane Glycoproteins/genetics , Microglia/drug effects , Phenols/pharmacology , Receptors, Immunologic/genetics , Retinoid X Receptors/genetics , Thyroid Hormones/pharmacology , Acetates/chemical synthesis , Animals , Binding Sites , Brain/drug effects , Brain/immunology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Humans , Immunity, Innate , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Models, Molecular , Phenols/chemical synthesis , Phenoxyacetates/pharmacology , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Response Elements , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Signal Transduction
2.
Endocr Res ; 45(3): 210-215, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1050038

ABSTRACT

BACKGROUND: Uptake of coronaviruses by target cells involves binding of the virus by cell ectoenzymes. For the etiologic agent of COVID-19 (SARS-CoV-2), a receptor has been identified as angiotensin-converting enzyme-2 (ACE2). Recently it has been suggested that plasma membrane integrins may be involved in the internalization and replication of clinically important coronaviruses. For example, integrin αvß3 is involved in the cell uptake of a model porcine enteric α-coronavirus that causes human epidemics. ACE2 modulates the intracellular signaling generated by integrins. OBJECTIVE: We propose that the cellular internalization of αvß3 applies to uptake of coronaviruses bound to the integrin, and we evaluate the possibility that clinical host T4 may contribute to target cell uptake of coronavirus and to the consequence of cell uptake of the virus. DISCUSSION AND CONCLUSIONS: The viral binding domain of the integrin is near the Arg-Gly-Asp (RGD) peptide-binding site and RGD molecules can affect virus binding. In this same locale on integrin αvß3 is the receptor for thyroid hormone analogues, particularly, L-thyroxine (T4). By binding to the integrin, T4 has been shown to modulate the affinity of the integrin for other proteins, to control internalization of αvß3 and to regulate the expression of a panel of cytokine genes, some of which are components of the 'cytokine storm' of viral infections. If T4 does influence coronavirus uptake by target cells, other thyroid hormone analogues, such as deaminated T4 and deaminated 3,5,3'-triiodo-L-thyronine (T3), are candidate agents to block the virus-relevant actions of T4 at integrin αvß3 and possibly restrict virus uptake.


Subject(s)
Coronavirus Infections/virology , Integrin alphaVbeta3/metabolism , Porcine epidemic diarrhea virus/metabolism , Receptors, Virus/drug effects , Thyroid Hormones/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Cytokines/physiology , Epithelial Cells/virology , Humans , Oligopeptides/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Swine , Thyroid Hormones/physiology , Thyroxine/physiology , Virus Internalization
3.
Fundam Clin Pharmacol ; 34(5): 530-547, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-626969

ABSTRACT

Patients with COVID-19 are sometimes already being treated for one or more other chronic conditions, especially if they are elderly. Introducing a treatment against COVID-19, either on an outpatient basis or during hospitalization for more severe cases, raises the question of potential drug-drug interactions. Here, we analyzed the potential or proven risk of the co-administration of drugs used for the most common chronic diseases and those currently offered as treatment or undergoing therapeutic trials for COVID-19. Practical recommendations are offered, where possible.


Subject(s)
Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Prescription Drugs/pharmacology , Analgesics/pharmacology , Anti-Asthmatic Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anticoagulants/pharmacology , Antineoplastic Agents/pharmacology , Antitubercular Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus , COVID-19 , Cardiovascular Agents/pharmacology , Drug Interactions , Humans , Hydroxychloroquine/pharmacology , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Interferon beta-1b/pharmacology , Pandemics , Prescription Drugs/pharmacokinetics , Psychotropic Drugs/pharmacology , Receptors, Interleukin/antagonists & inhibitors , Risk Assessment , SARS-CoV-2 , Thyroid Hormones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL