Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2023743

ABSTRACT

Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) are major elements of the innate immune system that recognize pathogen-associated molecular patterns. Single-nucleotide polymorphisms (SNPs) in the TLR, NLR, and RLR genes may lead to an imbalance in the production of pro- and anti-inflammatory cytokines, changes in susceptibility to infections, the development of diseases, and carcinogenesis. Acute myeloid leukemia (AML) is a bone marrow malignancy characterized by uncontrolled proliferation of transformed myeloid precursors. We retrospectively analyzed 90 AML patients. We investigated the effect of fifteen SNPs located in the genes coding for RLR1 (rs9695310, rs10738889, rs10813831), NOD1 (rs2075820, rs6958571), NOD2 (rs2066845, rs2066847, rs2066844), TLR3 (rs5743305, rs3775296, 3775291), TLR4 (rs4986791, rs4986790), and TLR9 (rs187084, rs5743836). We observed that TLR4 rs4986791, TLR9 rs5743836, and NOD2 rs2066847 were associated with CRP levels, while RLR-1 rs10738889 was associated with LDH level. Furthermore, we found TLR3 rs5743305 AA to be more common in patients with infections. We also found TLR9 rs187084 C to be associated with more favorable risk, and RLR-1 rs9695310 GG with higher age at diagnosis. In conclusion, the current study showed that SNPs in the genes encoding TLRs, NLRs, and RLRs may be potential biomarkers in patients with AML.


Subject(s)
Leukemia, Myeloid, Acute , NLR Proteins , Humans , Leukemia, Myeloid, Acute/genetics , NLR Proteins/genetics , Polymorphism, Single Nucleotide , Retrospective Studies , Toll-Like Receptor 3/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 9/genetics , Toll-Like Receptors/genetics
2.
Front Immunol ; 13: 921728, 2022.
Article in English | MEDLINE | ID: covidwho-1987494

ABSTRACT

Fibroblasts of different origins are known to possess stromal memory after inflammatory episodes. However, there are no studies exploring human lung fibroblast memory which may predict a subsequent inflammatory response in chronic respiratory diseases and COVID-19. MRC-5 and HF19 human lung fibroblast cell lines were treated using different primary and secondary stimulus combinations: TNFα-WD-TNFα, Poly (I:C)-WD-TNFα, TNFα-WD-Poly (I:C), or LPS-WD-TNFα with a 24-h rest period (withdrawal period; WD) between the two 24-h stimulations. TLR3 and NF-κB inhibitors were used to determine pathways involved. The effect of SARS-Cov-2 spike protein to inflammatory response of lung fibroblasts was also investigated. mRNA expressions of genes and IL6 release were measured using qRT-PCR and ELISA, respectively. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni's post hoc analysis for comparison of multiple groups. Preexposure with Poly (I:C) significantly increased TNFα-induced IL6 gene expression and IL6 release in both cell lines, while it affected neither gene expressions of IL1B, IL2, IL8, and MMP8 nor fibrosis-related genes: ACTA2, COL1A1, POSTN, and TGFB1. Inhibition of TLR3 or NF-κB during primary stimulation significantly downregulated IL6 release. Simultaneous treatment of MRC-5 cells with SARS-CoV-2 spike protein further increased TNFα-induced IL6 release; however, preexposure to Poly (I:C) did not affect it. Human lung fibroblasts are capable of retaining inflammatory memory and showed an augmented response upon secondary exposure. These results may contribute to the possibility of training human lung fibroblasts to respond suitably on inflammatory episodes after viral infection.


Subject(s)
COVID-19 , Interleukin-6/genetics , Tumor Necrosis Factor-alpha , Fibroblasts/metabolism , Gene Expression , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/metabolism , Lung/metabolism , NF-kappa B/metabolism , Poly I-C/metabolism , Poly I-C/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
BMC Infect Dis ; 22(1): 448, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1833287

ABSTRACT

BACKGROUND: The etiopathogenesis of coronavirus disease 2019 (COVID-19) stem partially from the abnormal activation of the innate and adaptive immune systems. Here in the current investigation, the mRNA expression levels of toll-like receptors (TLRs) were evaluated in the nasopharyngeal epithelial cells from COVID-19 patients. METHODS: Epithelial cells were obtained using nasopharyngeal swab samples from 90 COVID-19 patients and 50 controls. COVID-19 cases were classified into those without symptoms, with symptoms but not hospitalized, and with symptoms and hospitalized. To determine the mRNA expression levels of TLRs, first RNA was extracted and cDNA was synthesized, and finally Real-time PCR was exerted. RESULTS: It was seen that the transcript levels of TLR3, TLR7, TLR8, and TLR9 were overexpressed in the COVID-19 patients with clinical symptoms needing hospitalization as well as in those with clinical symptoms without needing for hospitalization compared to controls. Upregulation of TLRs was associated with clinical presentations of the patients. CONCLUSIONS: Modulation of TLR3, TLR7, TLR8, TLR9 in the epithelial cells of COVID-19 cases may estimate the disease severity and requirement for hospitalization.


Subject(s)
COVID-19 , Toll-Like Receptor 3 , Epithelial Cells/metabolism , Humans , Nasopharynx , RNA, Messenger/genetics , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/genetics , Toll-Like Receptor 9/genetics , Toll-Like Receptors/genetics
4.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1831591

ABSTRACT

Infection with the porcine epidemic diarrhoea virus (PEDV) causes severe enteric disease in suckling piglets, causing massive economic losses in the swine industry worldwide. Tripartite motif-containing 56 (TRIM56) has been shown to augment type I IFN response, but whether it affects PEDV replication remains uncharacterized. Here we investigated the role of TRIM56 in Marc-145 cells during PEDV infection. We found that TRIM56 expression was upregulated in cells infected with PEDV. Overexpression of TRIM56 effectively reduced PEDV replication, while knockdown of TRIM56 resulted in increased viral replication. TRIM56 overexpression significantly increased the phosphorylation of IRF3 and NF-κB P65, and enhanced the IFN-ß antiviral response, while silencing TRIM56 did not affect IRF3 activation. TRIM56 overexpression increased the protein level of TRAF3, the component of the TLR3 pathway, thereby significantly activating downstream IRF3 and NF-κB signalling. We demonstrated that TRIM56 overexpression inhibited PEDV replication and upregulated expression of IFN-ß, IFN-stimulated genes (ISGs) and chemokines in a dose-dependent manner. Moreover, truncations of the RING domain, N-terminal domain or C-terminal portion on TRIM56 were unable to induce IFN-ß expression and failed to restrict PEDV replication. Together, our results suggested that TRIM56 was upregulated in Marc-145 cells in response to PEDV infection. Overexpression of TRIM56 inhibited PEDV replication by positively regulating the TLR3-mediated antiviral signalling pathway. These findings provide evidence that TRIM56 plays a positive role in the innate immune response during PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Antiviral Agents , Interferon-beta/genetics , Interferon-beta/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Swine , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Virus Replication
5.
J Med Virol ; 94(3): 869-877, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718363

ABSTRACT

Balanced immune regulation is crucial for recognizing an invading pathogen, its killing, and elimination. Toll-like receptors (TLRs) are the key regulators of the innate immune system. It helps in identifying between self and nonself-molecule and eventually eliminates the nonself. Endosomal TLR, mainly TLR3, TLR7, TLR8, and membrane-bound TLR4, has a role in the induction of cytokine storms. TLR7/8 recognizes the ssRNA SARS-COV-2 and when it replicates to dsRNA, it is recognized by TLR3 and drives the TRIF-mediated inflammatory signaling like NF-κB, MAPK. Such signaling leads to significant transcription and translation of pro-inflammatory genes, releasing inflammatory molecules into the systemic circulation, causing an imbalance in the system. So, whenever an imbalance occurs, a surge in the pro-inflammatory mediators is observed in the blood, including cytokines like interleukin (IL)-2, IL-4, IL-6, IL-1ß, IL-8, interferon (IFN)-γ, tumor necrosis factor (TNF)-α. IL-6 and IL-1ß are one of the driving factors for bringing the cytokine storm into the systemic circulation, which migrates into the other organs, causing multiple organ failures leading to the death of the individual with severe illness.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokine Release Syndrome , Cytokines , Humans , Interleukin-6 , Toll-Like Receptor 3/genetics , Toll-Like Receptor 7 , Toll-Like Receptors , Tumor Necrosis Factor-alpha
6.
Clin Immunol ; 235: 108929, 2022 02.
Article in English | MEDLINE | ID: covidwho-1629722

ABSTRACT

Toll-like receptor 3 (TLR3) and TLR7 genes are involved in the host immune response against viral infections including SARS-COV-2. This study aimed to investigate the association between the TLR3(rs3775290) and TLR7(rs179008) polymorphisms with the prognosis and susceptibility to COVID-19 pneumonia accompanying SARS-COV-2 infection. This case-control study included 236 individuals: 136 COVID-19 pneumonia patients and 100 age and sex-matched controls. Two polymorphisms (TLR3 rs3775290 and TLR7 rs179008) were genotyped by allelic discrimination through TaqMan real-time PCR. This study also investigated predictors of mortality in COVID-19 pneumonia through logistic regression. The mutant 'T/T' genotypes and the 'T' alleles of TLR3(rs3775290) and TLR7(rs179008) polymorphisms were significantly associated with increased risk of COVID-19 pneumonia. This study did not report association between the mutant 'T/T' genotypes of TLR3(rs3775290) and TLR7(rs179008) and the disease outcome. In multivariate analysis, the independent predictors of mortality in COVID-19 pneumonia were male sex, SPO2 ≤ 82%, INR > 1, LDH ≥ 1000 U/l, and lymphocyte count<900/mm3 (P < 0.05).


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Pneumonia/genetics , Polymorphism, Single Nucleotide , Toll-Like Receptor 3/genetics , Toll-Like Receptor 7/genetics , Aged , Alleles , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged , Pneumonia/diagnosis , Pneumonia/virology , Prognosis , ROC Curve , Risk Factors , SARS-CoV-2/physiology
7.
Autophagy ; 18(7): 1662-1672, 2022 07.
Article in English | MEDLINE | ID: covidwho-1585354

ABSTRACT

The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways.Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor.


Subject(s)
COVID-19 , Toll-Like Receptor 3 , Autophagy/genetics , Biomarkers , COVID-19/genetics , HEK293 Cells , Humans , Hydroxychloroquine/therapeutic use , Male , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Severity of Illness Index , Toll-Like Receptor 3/genetics
10.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1365266

ABSTRACT

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks. We tested whether rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only 1 rare pLOF mutation across these genes among 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We found no evidence of association of rare LOF variants in the 13 candidate genes with severe COVID-19 outcomes.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Loss of Function Mutation , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Severity of Illness Index , Toll-Like Receptor 3/genetics , Whole Exome Sequencing , Whole Genome Sequencing , Young Adult
11.
J Med Virol ; 93(9): 5376-5389, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363676

ABSTRACT

The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to the pathogenesis of coronavirus disease 2019 (COVID-19). The strategy used by SARS-CoV-2 to evade antiviral immunity needs further investigation. Here, we reported that SARS-CoV-2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS-CoV-2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKKε, rather than IRF3-5D, which is the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of the cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. A mechanistic analysis revealed that the SARS-CoV-2 ORF9b protein interacted with RIG-I, MDA-5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS-CoV-2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS-CoV-2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS-CoV-2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID-19.


Subject(s)
DEAD Box Protein 58/immunology , Immune Evasion/genetics , Interferons/immunology , Nucleotidyltransferases/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Animals , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/genetics , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Nucleotidyltransferases/genetics , Phosphoproteins/genetics , Phosphoproteins/immunology , Plasmids/chemistry , Plasmids/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 3/genetics , Transfection , Vero Cells , Virus Replication/immunology
12.
Sci Rep ; 11(1): 15223, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328855

ABSTRACT

The role of innate immunity in COVID-19 is not completely understood. Therefore, this study explored the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection on the expression of Pattern Recognition Receptors (PRRs) in peripheral blood cells and their correlated cytokines. Seventy-nine patients with severe COVID-19 on admission, according to World Health Organization (WHO) classification, were divided into two groups: patients who needed mechanical ventilation and/or deceased (SEVERE, n = 50) and patients who used supplementary oxygen but not mechanical ventilation and survived (MILD, n = 29); a control group (CONTROL, n = 17) was also enrolled. In the peripheral blood, gene expression (mRNA) of Toll-like receptors (TLRs) 3, 4, 7, 8, and 9, retinoic-acid inducible gene I (RIGI), NOD-like receptor family pyrin domain containing 3 (NLRP3), interferon alpha (IFN-α), interferon beta (IFN-ß), interferon gamma (IFN-γ), interferon lambda (IFN-λ), pro-interleukin(IL)-1ß (pro-IL-1ß), and IL-18 was determined on admission, between 5-9 days, and between 10-15 days. Circulating cytokines in plasma were also measured. When compared to the COVID-19 MILD group, the COVID-19 SEVERE group had lower expression of TLR3 and overexpression of TLR4.


Subject(s)
COVID-19/diagnosis , COVID-19/genetics , Gene Expression Regulation , Toll-Like Receptor 3/blood , Toll-Like Receptor 3/genetics , Aged , COVID-19/blood , COVID-19/therapy , Female , Humans , Male , Middle Aged , Prognosis , Respiration, Artificial
13.
Vascul Pharmacol ; 140: 106861, 2021 10.
Article in English | MEDLINE | ID: covidwho-1180098

ABSTRACT

The virus responsible for the coronavirus disease of 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidences suggest that COVID-19 could trigger cardiovascular complications in apparently healthy patients. Coronaviruses are enveloped positive-strand RNA viruses acting as a pathogen-associated molecular pattern (PAMP)/ danger-associated molecular patterns (DAMP). Interestingly, Toll-like receptor (TLR) 3 recognize both PAMPs DAMPs and is activated by viral double-stranded RNA (dsRNA) leading to activation of TIR receptor domain-containing adaptor inducing IFN-ß (TRIF) dependent pathway. New evidence has shown a link between virus dsRNA and increased BP. Hence, we hypothesize that COVID-19 infection may be over activating the TLR3 through dsRNA, evoking further damage to the patients, leading to vascular inflammation and increased blood pressure, favoring the development of several cardiovascular complications, including hypertension.


Subject(s)
COVID-19/genetics , COVID-19/pathology , Hypertension/genetics , RNA, Double-Stranded/genetics , Toll-Like Receptor 3/genetics , Animals , Humans , Hypertension/pathology , Hypertension/virology , Mice , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
15.
J Proteome Res ; 20(1): 139-153, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-965927

ABSTRACT

Spurred into action by the COVID-19 pandemic, the global scientific community has, in a short of period of time, made astonishing progress in understanding and combating COVID-19. Given the known human protein machinery for (a) SARS-CoV-2 entry, (b) the host innate immune response, and (c) virus-host interactions (protein-protein and RNA-protein), the potential effects of human genetic variation in this machinery, which may contribute to clinical differences in SARS-CoV-2 pathogenesis and help determine individual risk for COVID-19 infection, are explored. The Genome Aggregation Database (gnomAD) was used to show that several rare germline exome variants of proteins in these pathways occur in the human population, suggesting that carriers of these rare variants (especially for proteins of innate immunity pathways) are at risk for severe symptoms (like the severe symptoms in patients who are known to be rare variant carriers), whereas carriers of other variants could have a protective advantage against infection. The occurrence of genetic variation is thus expected to motivate the experimental probing of natural variants to understand the mechanistic differences in SARS-CoV-2 pathogenesis from one individual to another.


Subject(s)
COVID-19/genetics , Genetic Variation , Host-Pathogen Interactions/genetics , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Humans , Immunity, Innate/genetics , Quantitative Trait Loci , RNA, Viral/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 7/genetics , Virus Internalization
16.
Science ; 370(6515)2020 10 23.
Article in English | MEDLINE | ID: covidwho-796722

ABSTRACT

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Interferon Type I/immunology , Loss of Function Mutation , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Asymptomatic Infections , Betacoronavirus , COVID-19 , Child , Child, Preschool , Female , Genetic Loci , Genetic Predisposition to Disease , Humans , Infant , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Pandemics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 3/genetics , Young Adult
17.
J Med Virol ; 92(10): 2114-2123, 2020 10.
Article in English | MEDLINE | ID: covidwho-777547

ABSTRACT

The present study provides the first multiepitope vaccine construct using the 3CL hydrolase protein of SARS-CoV-2. The coronavirus 3CL hydrolase (Mpro) enzyme is essential for proteolytic maturation of the virus. This study was based on immunoinformatics and structural vaccinology strategies. The design of the multiepitope vaccine was built using helper T-cell and cytotoxic T-cell epitopes from the 3CL hydrolase protein along with an adjuvant to enhance immune response; these are joined to each other by short peptide linkers. The vaccine also carries potential B-cell linear epitope regions, B-cell discontinuous epitopes, and interferon-γ-inducing epitopes. Epitopes of the constructed multiepitope vaccine were found to be antigenic, nonallergic, nontoxic, and covering large human populations worldwide. The vaccine construct was modeled, validated, and refined by different programs to achieve a high-quality three-dimensional structure. The resulting high-quality model was applied for conformational B-cell epitope selection and docking analyses with toll-like receptor-3 for understanding the capability of the vaccine to elicit an immune response. In silico cloning and codon adaptation were also performed with the pET-19b plasmid vector. The designed multiepitope peptide vaccine may prompt the development of a vaccine to control SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus 3C Proteases/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Amino Acid Sequence , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , Cloning, Molecular/methods , Computational Biology/methods , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Genetic Vectors/chemistry , Genetic Vectors/immunology , HLA Antigens/chemistry , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Immunity, Innate/drug effects , Immunogenicity, Vaccine , Interferon-gamma/genetics , Interferon-gamma/immunology , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , T-Lymphocytes, Cytotoxic/chemistry , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , T-Lymphocytes, Helper-Inducer/chemistry , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/virology , Toll-Like Receptor 3/chemistry , Toll-Like Receptor 3/genetics , User-Computer Interface , Vaccines, Subunit
18.
Infect Dis Poverty ; 9(1): 132, 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-768657

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) linked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause severe illness and life-threatening pneumonia in humans. The current COVID-19 pandemic demands an effective vaccine to acquire protection against the infection. Therefore, the present study was aimed to design a multiepitope-based subunit vaccine (MESV) against COVID-19. METHODS: Structural proteins (Surface glycoprotein, Envelope protein, and Membrane glycoprotein) of SARS-CoV-2 are responsible for its prime functions. Sequences of proteins were downloaded from GenBank and several immunoinformatics coupled with computational approaches were employed to forecast B- and T- cell epitopes from the SARS-CoV-2 highly antigenic structural proteins to design an effective MESV. RESULTS: Predicted epitopes suggested high antigenicity, conserveness, substantial interactions with the human leukocyte antigen (HLA) binding alleles, and collective global population coverage of 88.40%. Taken together, 276 amino acids long MESV was designed by connecting 3 cytotoxic T lymphocytes (CTL), 6 helper T lymphocyte (HTL) and 4 B-cell epitopes with suitable adjuvant and linkers. The MESV construct was non-allergenic, stable, and highly antigenic. Molecular docking showed a stable and high binding affinity of MESV with human pathogenic toll-like receptors-3 (TLR3). Furthermore, in silico immune simulation revealed significant immunogenic response of MESV. Finally, MEV codons were optimized for its in silico cloning into the Escherichia coli K-12 system, to ensure its increased expression. CONCLUSION: The MESV developed in this study is capable of generating immune response against COVID-19. Therefore, if designed MESV further investigated experimentally, it would be an effective vaccine candidate against SARS-CoV-2 to control and prevent COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Immunogenicity, Vaccine/immunology , Molecular Docking Simulation , Pneumonia, Viral/immunology , SARS-CoV-2 , Sequence Analysis, Protein , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Toll-Like Receptor 3/chemistry , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccinology/methods , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics
19.
Virus Res ; 289: 198163, 2020 11.
Article in English | MEDLINE | ID: covidwho-752747

ABSTRACT

BACKGROUND: Susceptibility to severe viral infections was reported to be associated with genetic variants in immune response genes using case reports and GWAS studies. SARS-CoV-2 is an emergent viral disease that caused millions of COVID-19 cases all over the world. Around 15 % of cases are severe and some of them are accompanied by dysregulated immune system and cytokine storm. There is increasing evidence that severe manifestations of COVID-19 might be attributed to human genetic variants in genes related to immune deficiency and or inflammasome activation (cytokine storm). OBJECTIVE: Identify the candidate genes that are likely to aid in explaining severe COVID-19 and provide insights to understand the pathogenesis of severe COVID-19. METHODS: In this article, we systematically reviewed genes related to viral susceptibility that were reported in human genetic studies (Case-reports and GWAS) to understand the role of host viral interactions and to provide insights into the pathogenesis of severe COVID-19. RESULTS: We found 40 genes associated with viral susceptibility and 21 of them were associated with severe SARS-CoV disease and severe COVID-19. Some of those genes were implicated in TLR pathways, others in C-lectin pathways, and others were related to inflammasome activation (cytokine storm). CONCLUSION: This compilation represents a list of candidate genes that are likely to aid in explaining severe COVID-19 which are worthy of inclusion in gene panels and during meta-analysis of different variants in host genetics studies of COVID-19. In addition, we provide several hypotheses for severe COVID-19 and possible therapeutic targets.


Subject(s)
Betacoronavirus , Coronavirus Infections/genetics , Pandemics , Pneumonia, Viral/genetics , Adolescent , Adult , Age Factors , Alleles , COVID-19 , Coronavirus Infections/drug therapy , Genetic Predisposition to Disease , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Humans , Inflammasomes/genetics , Lectins/genetics , Middle Aged , Models, Genetic , Molecular Targeted Therapy , Mutation , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severe Acute Respiratory Syndrome/genetics , Signal Transduction/genetics , Toll-Like Receptor 3/genetics , Toll-Like Receptors/genetics , Virus Diseases/genetics , Young Adult
20.
Infect Genet Evol ; 85: 104507, 2020 11.
Article in English | MEDLINE | ID: covidwho-731865

ABSTRACT

The COVID-19 pandemic highlighted healthcare disparities in multiple countries. As such morbidity and mortality vary significantly around the globe between populations and ethnic groups. Underlying medical conditions and environmental factors contribute higher incidence in some populations and a genetic predisposition may play a role for severe cases with respiratory failure. Here we investigated whether genetic variation in the key genes for viral entry to host cells-ACE2 and TMPRSS2-and sensing of viral genomic RNAs (i.e., TLR3/7/8) could explain the variation in incidence across diverse ethnic groups. Overall, these genes are under strong selection pressure and have very few nonsynonymous variants in all populations. Genetic determinant for the binding affinity between SARS-CoV-2 and ACE2 does not show significant difference between populations. Non-genetic factors are likely to contribute differential population characteristics affected by COVID-19. Nonetheless, a systematic mutagenesis study on the receptor binding domain of ACE2 is required to understand the difference in host-viral interaction across populations.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Toll-Like Receptors/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Humans , Mutagenesis, Site-Directed , Protein Binding , Protein Domains , Selection, Genetic , Serine Endopeptidases/metabolism , Toll-Like Receptor 3/chemistry , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/chemistry , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/chemistry , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Toll-Like Receptors/chemistry , Toll-Like Receptors/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL