Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
2.
Rev Esp Anestesiol Reanim (Engl Ed) ; 69(2): 105-108, 2022 02.
Article in English | MEDLINE | ID: covidwho-1707579

ABSTRACT

Vocal cord paralysis is a rare but severe complication after orotracheal intubation. The most common cause is traumatic, due to compression of the recurrent laryngeal nerve between the orotracheal tube cuff and the thyroid cartilage. Other possible causes are direct damage to the vocal cords during intubation, dislocation of the arytenoid cartilages, or infections, especially viral infections. It is usually due to a recurrent laryngeal nerve neuropraxia, and the course is benign in most patients. We present the case of a man who developed late bilateral vocal cord paralysis after pneumonia complicated with respiratory distress due to SARS-CoV-2 that required orotracheal intubation for 11 days. He presented symptoms of dyspnea 20 days after discharge from hospital with subsequent development of stridor, requiring a tracheostomy. Due to the temporal evolution, a possible contribution of the SARS-CoV-2 infection to the picture is pointed out.


Subject(s)
COVID-19 , Vocal Cord Paralysis , COVID-19/complications , Humans , Intubation, Intratracheal/adverse effects , Male , SARS-CoV-2 , Tracheostomy/adverse effects , Vocal Cord Paralysis/etiology
3.
Curr Opin Anaesthesiol ; 35(2): 236-241, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1672285

ABSTRACT

PURPOSE OF REVIEW: The decision to undergo early tracheostomy in critically ill patients has been the subject of multiple studies in recent years, including several meta-analyses and a large-scale examination of the National in-patient Sampling (NIS) database. The research has focused on different patient populations, and identified common outcomes measures related to ventilation. At the crux of the new research is the decision to undergo an additional invasive procedure, mainly tracheostomy, rather than attempt endotracheal tube ventilation with or without early extubation. Notably, recent research indicates that neurological and SARS-CoV-2 (COVID-19) patients seem to have an exaggerated benefit from early tracheostomy. RECENT FINDINGS: Recent studies of patients undergoing early tracheostomy have shown decreases in ventilator associated pneumonia, ventilator duration and duration of ICU stay. However, these studies have shown mixed data with respect to mortality and length of hospitalization. Such advantages only become apparent with large-scale examination. Confounding the overall discussion is that the research has focused on heterogeneous groups, including neurosurgical ICU patients, general ICU patients, and most recently, intubated COVID-19 patients. SUMMARY: Specific populations such as neurosurgical and COVID-19 patients have clearly defined benefits following early tracheostomy. Although the benefit is less pronounced, there does seem to be an advantage in general ICU patients with regards to ventilator-free days and lower incidence of ventilator-associated pneumonia. In these patients, large-scale examination points to a clear mortality benefit.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Critical Illness/therapy , Humans , Intensive Care Units , Length of Stay , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , Respiration, Artificial/adverse effects , SARS-CoV-2 , Tracheostomy/adverse effects , Tracheostomy/methods
6.
PLoS One ; 16(12): e0261024, 2021.
Article in English | MEDLINE | ID: covidwho-1623650

ABSTRACT

BACKGROUND: Tracheostomy has been proposed as an option to help organize the healthcare system to face the unprecedented number of patients hospitalized for a COVID-19-related acute respiratory distress syndrome (ARDS) in intensive care units (ICU). It is, however, considered a particularly high-risk procedure for contamination. This paper aims to provide our experience in performing tracheostomies on COVID-19 critically ill patients during the pandemic and its long-term local complications. METHODS: We performed a retrospective analysis of prospectively collected data of patients tracheostomized for a COVID-19-related ARDS in two university hospitals in the Paris region between January 27th (date of first COVID-19 admission) and May 18th, 2020 (date of last tracheostomy performed). We focused on tracheostomy technique (percutaneous versus surgical), timing (early versus late) and late complications. RESULTS: Forty-eight tracheostomies were performed with an equal division between surgical and percutaneous techniques. There was no difference in patients' characteristics between surgical and percutaneous groups. Tracheostomy was performed after a median of 17 [12-22] days of mechanical ventilation (MV), with 10 patients in the "early" group (≤ day 10) and 38 patients in the "late" group (> day 10). Survivors required MV for a median of 32 [22-41] days and were ultimately decannulated with a median of 21 [15-34] days spent on cannula. Patients in the early group had shorter ICU and hospital stays (respectively 15 [12-19] versus 35 [25-47] days; p = 0.002, and 21 [16-28] versus 54 [35-72] days; p = 0.002) and spent less time on MV (respectively 17 [14-20] and 35 [27-43] days; p<0.001). Interestingly, patients in the percutaneous group had shorter hospital and rehabilitation center stays (respectively 44 [34-81] versus 92 [61-118] days; p = 0.012, and 24 [11-38] versus 45 [22-71] days; p = 0.045). Of the 30 (67%) patients examined by a head and neck surgeon, 17 (57%) had complications with unilateral laryngeal palsy (n = 5) being the most prevalent. CONCLUSIONS: Tracheostomy seems to be a safe procedure that could help ICU organization by delegating work to a separate team and favoring patient turnover by allowing faster transfer to step-down units. Following guidelines alone was found sufficient to prevent the risk of aerosolization and contamination of healthcare professionals.


Subject(s)
COVID-19/surgery , Tracheostomy/methods , Aged , COVID-19/mortality , COVID-19/therapy , Critical Care/methods , Female , Follow-Up Studies , Hospitals, University , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Paris , Personnel, Hospital , Respiration, Artificial , Retrospective Studies , Tracheostomy/adverse effects , Treatment Outcome
7.
Am Surg ; 87(11): 1775-1782, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1511589

ABSTRACT

BACKGROUND: The COVID-19 pandemic overwhelmed New York City hospitals early in the pandemic. Shortages of ventilators and sedatives prompted tracheostomy earlier than recommended by professional societies. This study evaluates the impact of percutaneous dilational tracheostomy (PDT) in COVID+ patients on critical care capacity. METHODS: This is a single-institution prospective case series of mechanically ventilated COVID-19 patients undergoing PDT from April 1 to June 4, 2020 at a public tertiary care center. RESULTS: Fifty-five patients met PDT criteria and underwent PDT at a median of 13 days (IQR 10, 18) from intubation. Patient characteristics are found in Table 1. Intravenous midazolam, fentanyl, and cisatracurium equivalents were significantly reduced 48 hours post-PDT (Table 2). Thirty-five patients were transferred from the ICU and liberated from the ventilator. Median time from PDT to ventilator liberation and ICU discharge was 10 (IQR 4, 14) and 12 (IQR 8, 17) days, respectively. Decannulation occurred in 45.5% and 52.7% were discharged from acute inpatient care (Figure 1). Median follow-up for the study was 62 days. Four patients had bleeding complications postoperatively and 11 died during the study period. Older age was associated with increased odds of complication (OR 1.12, 95% CI 1.04, 1.23) and death (OR=1.15, 95% CI 1.05, 1.30). All operators tested negative for COVID-19 during the study period. CONCLUSION: These findings suggest COVID-19 patients undergoing tracheostomy within the standard time frame can improve critical care capacity in areas strained by the pandemic with low risk to operators. Long-term outcomes after PDT deserve further study.


Subject(s)
COVID-19/surgery , Critical Care/statistics & numerical data , Patient Acceptance of Health Care/statistics & numerical data , Tracheostomy/statistics & numerical data , Age Factors , COVID-19/epidemiology , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , New York City/epidemiology , Prospective Studies , Respiration, Artificial/statistics & numerical data , Time Factors , Tracheostomy/adverse effects , Tracheostomy/methods , Treatment Outcome , Ventilator Weaning/statistics & numerical data
9.
Respir Care ; 66(12): 1797-1804, 2021 12.
Article in English | MEDLINE | ID: covidwho-1436182

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic increased the number of patients needing invasive mechanical ventilation, either through an endotracheal tube or through a tracheostomy. Tracheomalacia is a rare but potentially severe complication of mechanical ventilation, which can significantly complicate the weaning process. The aim of this study was to describe the strategies of airway management in mechanically ventilated patients with respiratory failure due to SARS-CoV-2, the incidence of severe tracheomalacia, and investigate the factors associated with its occurrence. METHODS: This retrospective, single-center study was performed in an Italian teaching hospital. All adult subjects admitted to the ICU between February 24, 2020, and June 30, 2020, treated with invasive mechanical ventilation for respiratory failure caused by SARS-CoV-2 were included. Clinical data were collected on the day of ICU admission, whereas information regarding airway management was collected daily. RESULTS: A total of 151 subjects were included in the study. On admission, ARDS severity was mild in 21%, moderate in 62%, and severe in 17% of the cases, with an overall mortality of 40%. A tracheostomy was performed in 73 (48%), open surgical technique in 54 (74%), and percutaneous Ciaglia technique in 19 (26%). Subjects who had a tracheostomy performed had, compared to the other subjects, a longer duration of mechanical ventilation and longer ICU and hospital stay. Tracheomalacia was diagnosed in 8 (5%). The factors associated with tracheomalacia were female sex, obesity, and tracheostomy. CONCLUSIONS: In our population, approximately 50% of subjects with ARDS due to SARS-CoV-2 were tracheostomized. Tracheostomized subjects had a longer ICU and hospital stay. In our population, 5% were diagnosed with tracheomalacia. This percentage is 10 times higher than what is reported in available literature, and the underlying mechanisms are not fully understood.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Tracheomalacia , Adult , Female , Humans , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2 , Tracheostomy/adverse effects
10.
Ann Thorac Surg ; 111(1): 381, 2021 01.
Article in English | MEDLINE | ID: covidwho-1382222
11.
J Laryngol Otol ; 135(10): 897-903, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1368885

ABSTRACT

OBJECTIVE: This study aimed to compare treatment outcomes in patients with laryngeal and tracheal stenosis treated during and prior to the coronavirus disease 2019 pandemic period. METHOD: Patients treated for laryngotracheal lesions with impending airway compromise during the active pandemic period were matched with those treated for similar lesions in the preceding years in a monocentric tertiary hospital setting. RESULTS: During the pandemic period of 55 days, 31 patients underwent 47 procedures. Seven patients (2 children, 5 adults) had open airway surgery, and one had an operation-specific complication. Twenty-four patients (10 children, 14 adults) underwent 40 endoscopic interventions without any complications. Operation specific results during and prior to the pandemic were comparable. CONCLUSION: The management strategy in patients with laryngotracheal lesions and impending airway compromise should not be altered during periods of risk from coronavirus disease 2019. Avoiding a tracheostomy by performing primary corrective surgery or proceeding with a definitive decannulation would be beneficial in these patients to reduce the risk of contagion.


Subject(s)
COVID-19/transmission , Endoscopy/statistics & numerical data , Laryngostenosis/surgery , Tracheal Stenosis/surgery , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Catheterization/adverse effects , Child, Preschool , Clinical Decision-Making/ethics , Endoscopy/adverse effects , Female , Humans , Male , Postoperative Complications/epidemiology , Retrospective Studies , SARS-CoV-2/genetics , Tertiary Care Centers/statistics & numerical data , Tracheostomy/adverse effects , Treatment Outcome
12.
J Bronchology Interv Pulmonol ; 29(2): 125-130, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1341142

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to hypoxemic respiratory failure resulting in prolonged mechanical ventilation. Typically, tracheostomy is considered in patients who remain ventilator dependent beyond 2 weeks. However, in the setting of this novel respiratory virus, the safety and benefits of tracheostomy are not well-defined. Our aim is to describe our experience with percutaneous tracheostomy in patients with COVID-19. MATERIALS AND METHODS: This is a single center retrospective descriptive study. We reviewed comorbidities and outcomes in patients with respiratory failure due to COVID-19 who underwent percutaneous tracheostomy at our institution from April 2020 to September 2020. In addition, we provide details of our attempt to minimize aerosolization by using a modified protocol with brief periods of planned apnea. RESULTS: A total of 24 patients underwent percutaneous tracheostomy during the study. The average body mass index was 33.0±10.0. At 30 days posttracheostomy 17 (71%) patients still had the tracheostomy tube and 14 (58%) remained ventilator dependent. There were 3 (13%) who died within 30 days. At the time of data analysis in November 2020, 9 (38%) patients had died and 7 (29%) had been decannulated. None of the providers who participated in the procedure experienced signs or symptoms of COVID-19 infection. CONCLUSION: Percutaneous tracheostomy in prolonged respiratory failure due to COVID-19 appears to be safe to perform at the bedside for both the patient and health care providers in the appropriate clinical context. Morbid obesity did not limit the ability to perform percutaneous tracheostomy in COVID-19 patients.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/complications , Humans , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies , SARS-CoV-2 , Tracheostomy/adverse effects , Tracheostomy/methods
14.
Braz J Anesthesiol ; 72(2): 189-193, 2022.
Article in English | MEDLINE | ID: covidwho-1330668

ABSTRACT

BACKGROUND: Percutaneous dilation tracheostomy is an aerosol-generating procedure carrying a documented infectious risk during respiratory virus pandemics. For this reason, during the COVID-19 outbreak, surgical tracheostomy was preferred to the percutaneous one, despite the technique related complications increased risk. METHODS: We describe a new sequence for percutaneous dilation tracheostomy procedure that could be considered safe both for patients and healthcare personnel. A fiberscope was connected to a video unit to allow bronchoscopy. Guidewire positioning was performed as usual. While the established standard procedure continues with the creation of the stoma without any change in mechanical ventilation, we retracted the bronchoscope until immediately after the access valve in the mount tube, allowing normal ventilation. After 3 minutes of ventilation with 100% oxygen, mechanical ventilation was stopped without disconnecting the circuit. During apnea, the stoma was created by dilating the trachea and the tracheostomy cannula was inserted. Ventilation was then resumed. We evaluated the safeness of the procedure by recording any severe desaturation and by performing serological tests to all personnel. RESULTS: Thirty-six patients (38%) of 96 underwent tracheostomy; 22 (23%) percutaneous dilation tracheostomies with the new approach were performed without any desaturation. All personnel (150 operators) were evaluated for serological testing: 9 (6%) had positive serology but none of them had participated in tracheostomy procedures. CONCLUSION: This newly described percutaneous dilation tracheostomy technique was not related to severe desaturation events and we did not observe any positive serological test in health workers who performed the tracheostomies.


Subject(s)
COVID-19 , Tracheostomy , Apnea/etiology , Humans , Pandemics , Respiration, Artificial/methods , Tracheostomy/adverse effects , Tracheostomy/methods
15.
JAMA Otolaryngol Head Neck Surg ; 147(9): 797-803, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1320055

ABSTRACT

Importance: During respiratory disease outbreaks such as the COVID-19 pandemic, aerosol-generating procedures, including tracheostomy, are associated with the risk of viral transmission to health care workers. Objective: To quantify particle aerosolization during tracheostomy surgery and tracheostomy care and to evaluate interventions that minimize the risk of viral particle exposure. Design, Setting, and Participants: This comparative effectiveness study was conducted from August 2020 to January 2021 at a tertiary care academic institution. Aerosol generation was measured in real time with an optical particle counter during simulated (manikin) tracheostomy surgical and clinical conditions, including cough, airway nebulization, open suctioning, and electrocautery. Aerosol sampling was also performed during in vivo swine tracheostomy procedures (n = 4), with or without electrocautery. Fluorescent dye was used to visualize cough spread onto the surgical field during swine tracheostomy. Finally, 6 tracheostomy coverings were compared with no tracheostomy covering to quantify reduction in particle aerosolization. Main Outcomes and Measures: Respirable aerosolized particle concentration. Results: Cough, airway humidification, open suctioning, and electrocautery produced aerosol particles substantially above baseline. Compared with uncovered tracheostomy, decreased aerosolization was found with the use of tracheostomy coverings, including a cotton mask (73.8% [(95% CI, 63.0%-84.5%]; d = 3.8), polyester gaiter 79.5% [95% CI, 68.7%-90.3%]; d = 7.2), humidification mask (82.8% [95% CI, 72.0%-93.7%]; d = 8.6), heat moisture exchanger (HME) (91.0% [95% CI, 80.2%-101.7%]; d = 19.0), and surgical mask (89.9% [95% CI, 79.3%-100.6%]; d = 12.8). Simultaneous use of a surgical mask and HME decreased the particle concentration compared with either the HME (95% CI, 1.6%-12.3%; Cohen d = 1.2) or surgical mask (95% CI, 2.7%-13.2%; d = 1.9) used independently. Procedures performed with electrocautery increased total aerosolized particles by 1500 particles/m3 per 5-second interval (95% CI, 1380-1610 particles/m3 per 5-second interval; d = 1.8). Conclusions and Relevance: The findings of this laboratory and animal comparative effectiveness study indicate that tracheostomy surgery and tracheostomy care are associated with significant aerosol generation, putting health care workers at risk for viral transmission of airborne diseases. Combined HME and surgical mask coverage of the tracheostomy was associated with decreased aerosolization, thereby reducing the risk of viral transmission to health care workers.


Subject(s)
Aerosols , Infection Control/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Medical Staff, Hospital , Tracheostomy/adverse effects , Virion , Animals , COVID-19/prevention & control , COVID-19/transmission , Comparative Effectiveness Research , Electrocoagulation/adverse effects , Hot Temperature , Humans , Humidity , Manikins , Masks , Risk Factors , SARS-CoV-2 , Swine , Tracheostomy/instrumentation
16.
J Surg Res ; 266: 361-365, 2021 10.
Article in English | MEDLINE | ID: covidwho-1275539

ABSTRACT

BACKGROUND: Tracheostomy improves outcomes for critically ill patients requiring prolonged mechanical ventilation. Data are limited on the use and benefit of tracheostomies for intubated, critically ill coronavirus disease 2019 (COVID-19) patients. During the surge in COVID 19 infections in metropolitan New York/New Jersey, our hospital cared for many COVID-19 patients who required prolonged intubation. This study describes the outcomes in COVID-19 patients who underwent tracheostomy. METHODS: We present a case series of patients with COVID-19 who underwent tracheostomy at a single institution. Tracheostomies were performed on patients with prolonged mechanical ventilation beyond 3 wk. Patient demographics, medical comorbidities, and ventilator settings prior to tracheostomy were reviewed. Primary outcome was in-hospital mortality. Secondary outcomes included time on mechanical ventilation, length of ICU and hospital stay, and discharge disposition. RESULTS: Fifteen COVID-19 patients underwent tracheostomy at an average of 31 d post intubation. Two patients (13%) died. Half of our cohort was liberated from the ventilator (8 patients, 53%), with an average time to liberation of 14 ± 6 d after tracheostomy. Among patients off mechanical ventilation, 5 (63%) had their tracheostomies removed prior to discharge. The average intensive care length of stay was 47 ± 13 d (range 29-74 d) and the average hospital stay was 59 ± 16 d (range 34-103 d). CONCLUSIONS: This study reports promising outcomes in COVID-19 patients with acute respiratory failure and need for prolonged ventilation who undergo tracheostomy during their hospitalization. Further research is warranted to establish appropriate indications for tracheostomy in COVID-19 and confirm outcomes.


Subject(s)
COVID-19/complications , Intubation, Intratracheal/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Tracheostomy/statistics & numerical data , COVID-19/mortality , COVID-19/therapy , Critical Care/methods , Critical Care/statistics & numerical data , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Intubation, Intratracheal/adverse effects , Length of Stay/statistics & numerical data , Male , Middle Aged , Prospective Studies , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Retrospective Studies , Time Factors , Time-to-Treatment/statistics & numerical data , Tracheostomy/adverse effects , Treatment Outcome , Ventilator Weaning/statistics & numerical data
17.
Am J Otolaryngol ; 42(6): 103090, 2021.
Article in English | MEDLINE | ID: covidwho-1242863

ABSTRACT

INTRODUCTION: Currently we are faced with countless patients with prolonged invasive mechanical ventilation as a result of the COVID-19 pandemic, with the consequent increase in the need for tracheostomies and the risks that this includes for both patients and staff. OBJECTIVE: It is necessary to establish a safety protocol for the performance of percutaneous tracheostomies in order to reduce the associated infections. MATERIAL AND METHODS: 77 patients underwent tracheostomies between March 2020 and March 2021, evaluating the safety of the protocol and the rate of contagion among the staff. RESULTS: Percutaneous tracheostomy was performed according to the protocol in 72 patients, 5 were excluded due to unfavorable anatomy or other reasons. There were no cases of SARS COVID-19 contagion among health personnel attributable to the procedure during the three-week follow-up period. There were no surgical complications in this series. CONCLUSION: The authors recommend implementing security protocols such as the one discussed in this work, given its low contagion rate and ease of implementation.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Tracheostomy/adverse effects , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Medical Staff/statistics & numerical data , Risk , Safety , Time Factors , Tracheostomy/methods
SELECTION OF CITATIONS
SEARCH DETAIL