Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
PLoS One ; 17(4): e0266124, 2022.
Article in English | MEDLINE | ID: covidwho-1779761

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.


Subject(s)
COVID-19 , MicroRNAs , COVID-19/drug therapy , Computational Biology , Humans , MicroRNAs/genetics , Molecular Docking Simulation , SARS-CoV-2/genetics , Transcription Factors/genetics , Transcriptome
2.
EBioMedicine ; 75: 103806, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611694

ABSTRACT

BACKGROUND: To identify host genetic variants (SNPs) associated with COVID-19 disease severity, a number of genome-wide association studies (GWAS) have been conducted. Since most of the identified variants are located at non-coding regions, such variants are presumed to affect the expression of neighbouring genes, thereby influencing COVID-19 disease severity. However, it remains largely unknown which genes are influenced by such COVID-19 GWAS loci. METHODS: CRISPRi (interference)-mediated gene expression analysis was performed to identify genes functionally regulated by COVID-19 GWAS loci by targeting regions near the loci (SNPs) in lung epithelial cell lines. The expression of CRISPRi-identified genes was investigated using COVID-19-contracted human and monkey lung single-nucleus/cell (sn/sc) RNA-seq datasets. FINDINGS: CRISPRi analysis indicated that a region near rs11385942 at chromosome 3p21.31 (locus of highest significance with COVID-19 disease severity at intron 5 of LZTFL1) significantly affected the expression of LZTFL1 (P<0.05), an airway cilia regulator. A region near rs74956615 at chromosome 19p13.2 (locus located at the 3' untranslated exonic region of RAVER1), which is associated with critical illness in COVID-19, affected the expression of RAVER1 (P<0.05), a coactivator of MDA5 (IFIH1), which induces antiviral response genes, including ICAM1. The sn/scRNA-seq datasets indicated that the MDA5/RAVER1-ICAM1 pathway was activated in lung epithelial cells of COVID-19-resistant monkeys but not those of COVID-19-succumbed humans. INTERPRETATION: Patients with risk alleles of rs11385942 and rs74956615 may be susceptible to critical illness in COVID-19 in part through weakened airway viral clearance via LZTFL1-mediated ciliogenesis and diminished antiviral immune response via the MDA5/RAVER1 pathway, respectively. FUNDING: NIH.


Subject(s)
COVID-19/genetics , CRISPR-Cas Systems , Genetic Loci , Polymorphism, Single Nucleotide , Ribonucleoproteins/genetics , SARS-CoV-2/genetics , Transcription Factors/genetics , Animals , COVID-19/metabolism , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 19/metabolism , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 3/metabolism , Databases, Nucleic Acid , Genome-Wide Association Study , Haplorhini , Humans , RNA-Seq , Ribonucleoproteins/metabolism , SARS-CoV-2/metabolism , Transcription Factors/metabolism
3.
Curr Opin Immunol ; 72: 286-297, 2021 10.
Article in English | MEDLINE | ID: covidwho-1606955

ABSTRACT

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.


Subject(s)
COVID-19/immunology , Candidiasis, Cutaneous/immunology , Polyendocrinopathies, Autoimmune/immunology , T-Lymphocytes/immunology , Transcription Factors/genetics , Animals , Autoimmunity , Bronchiectasis , COVID-19/epidemiology , COVID-19/genetics , Candidiasis, Cutaneous/epidemiology , Candidiasis, Cutaneous/genetics , Clonal Selection, Antigen-Mediated/genetics , Disease Susceptibility , Humans , Immune Tolerance/genetics , Polyendocrinopathies, Autoimmune/epidemiology , Polyendocrinopathies, Autoimmune/genetics
4.
Front Immunol ; 12: 789317, 2021.
Article in English | MEDLINE | ID: covidwho-1593957

ABSTRACT

Background: The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods: RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results: Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion: This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Signal Transduction/genetics , Transcription Factors/genetics , Transcriptome/genetics , COVID-19/epidemiology , COVID-19/virology , Cluster Analysis , Gene Ontology , Gene Regulatory Networks , Humans , Immunity/genetics , Models, Genetic , Pandemics , Protein Interaction Maps/genetics , SARS-CoV-2/physiology
5.
Nat Commun ; 12(1): 4502, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1550282

ABSTRACT

Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Cell Nucleus/metabolism , Membrane Glycoproteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics , Viral Envelope Proteins/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Biological Transport , Cell Fusion , Cell Line , Cell Line, Tumor , Cells, Cultured , Giant Cells/metabolism , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Mice , RNA-Seq/methods , Signal Transduction/genetics , Transcription Factors/genetics , Viral Envelope Proteins/genetics
6.
Nat Genet ; 53(11): 1606-1615, 2021 11.
Article in English | MEDLINE | ID: covidwho-1503871

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.


Subject(s)
COVID-19/complications , Chromosomes, Human, Pair 3/genetics , Epithelial-Mesenchymal Transition , Lung/virology , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Transcription Factors/genetics , COVID-19/transmission , COVID-19/virology , Case-Control Studies , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Genome-Wide Association Study , Humans , Lung/metabolism , Lung/pathology , Male , Transcription Factors/metabolism
7.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478718

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology
8.
Front Immunol ; 12: 720205, 2021.
Article in English | MEDLINE | ID: covidwho-1403477

ABSTRACT

Patients with the monogenic immune dysregulatory syndrome autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), which is caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene, uniformly carry neutralizing autoantibodies directed against type-I interferons (IFNs) and many develop autoimmune pneumonitis, both of which place them at high risk for life-threatening COVID-19 pneumonia. Bamlanivimab and etesevimab are monoclonal antibodies (mAbs) that target the SARS-CoV-2 spike protein and block entry of SARS-CoV-2 in host cells. The use of bamlanivimab and etesevimab early during infection was associated with reduced COVID-19-associated hospitalization and death in patients at high risk for progressing to severe disease, which led the US Food and Drug Administration to issue an emergency use authorization for their administration in non-hypoxemic, non-hospitalized high-risk patients. However, the safety and efficacy of these mAbs has not been evaluated in APECED patients. We enrolled two siblings with APECED on an IRB-approved protocol (NCT01386437) and admitted them prophylactically at the NIH Clinical Center for evaluation of mild-to-moderate COVID-19. We assessed the safety and clinical effects of early treatment with bamlanivimab and etesevimab. The administration of bamlanivimab and etesevimab was well tolerated and was associated with amelioration of COVID-19 symptoms and prevention of invasive ventilatory support, admission to the intensive care, and death in both patients without affecting the production of antibodies to the nucleocapsid protein of SARS-CoV-2. If given early in the course of COVID-19 infection, bamlanivimab and etesevimab may be beneficial in APECED and other high-risk patients with neutralizing autoantibodies directed against type-I IFNs.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19/drug therapy , Polyendocrinopathies, Autoimmune/drug therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , Female , Humans , Interferons/genetics , Interferons/immunology , Male , Mutation , Polyendocrinopathies, Autoimmune/complications , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Transcription Factors/genetics , Transcription Factors/immunology
10.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1373495

ABSTRACT

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.


Subject(s)
COVID-19/etiology , T-Lymphocytes, Regulatory/physiology , Adult , Aged , CD4-Positive T-Lymphocytes/virology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammation/metabolism , Inflammation/virology , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lymphocytes, Tumor-Infiltrating/physiology , Male , Middle Aged , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Viruses ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: covidwho-1325791

ABSTRACT

A weak production of INF-ß along with an exacerbated release of pro-inflammatory cytokines have been reported during infection by the novel SARS-CoV-2 virus. SARS-CoV-2 encodes several proteins able to counteract the host immune system, which is believed to be one of the most important features contributing to the viral pathogenesis and development of a severe clinical picture. Previous reports have demonstrated that SARS-CoV-2 N protein, along with some non-structural and accessory proteins, efficiently suppresses INF-ß production by interacting with RIG-I, an important pattern recognition receptor (PRR) involved in the recognition of pathogen-derived molecules. In the present study, we better characterized the mechanism by which the SARS-CoV-2 N counteracts INF-ß secretion and affects RIG-I signaling pathways. In detail, when the N protein was ectopically expressed, we noted a marked decrease in TRIM25-mediated RIG-I activation. The capability of the N protein to bind to, and probably mask, TRIM25 could be the consequence of its antagonistic activity. Furthermore, this interaction occurred at the SPRY domain of TRIM25, harboring the RNA-binding activity necessary for TRIM25 self-activation. Here, we describe new findings regarding the interplay between SARS-CoV-2 and the IFN system, filling some gaps for a better understanding of the molecular mechanisms affecting the innate immune response in COVID-19.


Subject(s)
COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , Transcription Factors/immunology , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/immunology , COVID-19/genetics , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , DEAD Box Protein 58/genetics , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferon-beta/genetics , Interferon-beta/immunology , Promoter Regions, Genetic , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , Signal Transduction , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
12.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311204

ABSTRACT

Autoantibodies against IFN-α and IFN-ω (type I IFNs) were recently reported as causative for severe COVID-19 in the general population. Autoantibodies against IFN-α and IFN-ω are present in almost all patients with autoimmune polyendocrine syndrome type 1 (APS-1) caused by biallelic deleterious or heterozygous dominant mutations in AIRE. We therefore hypothesized that autoantibodies against type I IFNs also predispose patients with APS-1 to severe COVID-19. We prospectively studied 6 patients with APS-1 between April 1, 2020 and April 1, 2021. Biobanked pre-COVID-19 sera of APS-1 subjects were tested for neutralizing autoantibodies against IFN-α and IFN-ω. The ability of the patients' sera to block recombinant human IFN-α and IFN-ω was assessed by assays quantifying phosphorylation of signal transducer and activator of transcription 1 (STAT1) as well as infection-based IFN-neutralization assays. We describe 4 patients with APS-1 and preexisting high titers of neutralizing autoantibodies against IFN-α and IFN-ω who contracted SARS-CoV-2, yet developed only mild symptoms of COVID-19. None of the patients developed dyspnea, oxygen requirement, or high temperature. All infected patients with APS-1 were females and younger than 26 years of age. Clinical penetrance of neutralizing autoantibodies against type I IFNs for severe COVID-19 is not complete.


Subject(s)
Autoantibodies/immunology , COVID-19/complications , COVID-19/immunology , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Polyendocrinopathies, Autoimmune/complications , Polyendocrinopathies, Autoimmune/immunology , SARS-CoV-2 , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , Female , Humans , In Vitro Techniques , Interferon-alpha/antagonists & inhibitors , Interferon-alpha/immunology , Male , Polyendocrinopathies, Autoimmune/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Severity of Illness Index , Transcription Factors/genetics , Virus Replication/immunology , Young Adult
13.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1254437

ABSTRACT

Despite the association of prevalent health conditions with coronavirus disease 2019 (COVID-19) severity, the disease-modifying biomolecules and their pathogenetic mechanisms remain unclear. This study aimed to understand the influences of COVID-19 on different comorbidities and vice versa through network-based gene expression analyses. Using the shared dysregulated genes, we identified key genetic determinants and signaling pathways that may involve in their shared pathogenesis. The COVID-19 showed significant upregulation of 93 genes and downregulation of 15 genes. Interestingly, it shares 28, 17, 6 and 7 genes with diabetes mellitus (DM), lung cancer (LC), myocardial infarction and hypertension, respectively. Importantly, COVID-19 shared three upregulated genes (i.e. MX2, IRF7 and ADAM8) with DM and LC. Conversely, downregulation of two genes (i.e. PPARGC1A and METTL7A) was found in COVID-19 and LC. Besides, most of the shared pathways were related to inflammatory responses. Furthermore, we identified six potential biomarkers and several important regulatory factors, e.g. transcription factors and microRNAs, while notable drug candidates included captopril, rilonacept and canakinumab. Moreover, prognostic analysis suggests concomitant COVID-19 may result in poor outcome of LC patients. This study provides the molecular basis and routes of the COVID-19 progression due to comorbidities. We believe these findings might be useful to further understand the intricate association of these diseases as well as for the therapeutic development.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , Hypertension/genetics , Lung Neoplasms/genetics , Myocardial Infarction/genetics , Transcriptome/genetics , ADAM Proteins , COVID-19/virology , Computational Biology , Humans , Interferon Regulatory Factor-7 , Lung Neoplasms/pathology , Membrane Proteins , Myxovirus Resistance Proteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Transcription Factors/genetics
14.
Prog Biophys Mol Biol ; 166: 86-104, 2021 11.
Article in English | MEDLINE | ID: covidwho-1230706

ABSTRACT

RESEARCH PURPOSE: The sinus node (SN) is the heart's primary pacemaker. Key ion channels (mainly the funny channel, HCN4) and Ca2+-handling proteins in the SN are responsible for its function. Transcription factors (TFs) regulate gene expression through inhibition or activation and microRNAs (miRs) do this through inhibition. There is high expression of macrophages and mast cells within the SN connective tissue. 'Novel'/unexplored TFs and miRs in the regulation of ion channels and immune cells in the SN are not well understood. Using RNAseq and bioinformatics, the expression profile and predicted interaction of key TFs and cell markers with key miRs in the adult human SN vs. right atrial tissue (RA) were determined. PRINCIPAL RESULTS: 68 and 60 TFs significantly more or less expressed in the SN vs. RA respectively. Among those more expressed were ISL1 and TBX3 (involved in embryonic development of the SN) and 'novel' RUNX1-2, CEBPA, GLI1-2 and SOX2. These TFs were predicted to regulate HCN4 expression in the SN. Markers for different cells: fibroblasts (COL1A1), fat (FABP4), macrophages (CSF1R and CD209), natural killer (GZMA) and mast (TPSAB1) were significantly more expressed in the SN vs. RA. Interestingly, RUNX1-3, CEBPA and GLI1 also regulate expression of these cells. MiR-486-3p inhibits HCN4 and markers involved in immune response. MAJOR CONCLUSIONS: In conclusion, RUNX1-2, CSF1R, TPSAB1, COL1A1 and HCN4 are highly expressed in the SN but not miR-486-3p. Their complex interactions can be used to treat SN dysfunction such as bradycardia. Interestingly, another research group recently reported miR-486-3p is upregulated in blood samples from severe COVID-19 patients who suffer from bradycardia.


Subject(s)
COVID-19 , MicroRNAs , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , MicroRNAs/genetics , SARS-CoV-2 , Sinoatrial Node , Transcription Factors/genetics
15.
Int J Mol Sci ; 21(18)2020 Sep 05.
Article in English | MEDLINE | ID: covidwho-1215392

ABSTRACT

The transcription factor T cell factor 1 (TCF1), a pioneer transcription factor as well as a downstream effector of WNT/ß-catenin signaling, is indispensable for T cell development in the thymus. Recent studies have highlighted the additional critical role of TCF1 in peripheral T cell responses to acute and chronic infections as well as cancer. Here, we review the regulatory functions of TCF1 in the differentiation of T follicular helper cells, memory T cells and recently described stem-like exhausted T cells, where TCF1 promotes less differentiated stem-like cell states by controlling common gene-regulatory networks. These studies also provide insights into the mechanisms of defective T cell responses in older individuals. We discuss alterations in TCF1 expression and related regulatory networks with age and their consequences for T cell responses to infections and vaccination. The increasing understanding of the pathways regulating TCF1 expression and function in aged T cells holds the promise of enabling the design of therapeutic interventions aiming at improving T cell responses in older individuals.


Subject(s)
Cell Differentiation/physiology , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/metabolism , Aging/genetics , Aging/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Cellular Senescence/genetics , Cellular Senescence/physiology , Gene Expression Regulation/genetics , Hematopoiesis/physiology , Humans , Lymphocyte Activation/immunology , T Cell Transcription Factor 1/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway/physiology
16.
Mol Cell ; 81(13): 2838-2850.e6, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1202181

ABSTRACT

SARS-CoV-2 is an RNA virus whose success as a pathogen relies on its abilities to repurpose host RNA-binding proteins (RBPs) and to evade antiviral RBPs. To uncover the SARS-CoV-2 RNA interactome, we here develop a robust ribonucleoprotein (RNP) capture protocol and identify 109 host factors that directly bind to SARS-CoV-2 RNAs. Applying RNP capture on another coronavirus, HCoV-OC43, revealed evolutionarily conserved interactions between coronaviral RNAs and host proteins. Transcriptome analyses and knockdown experiments delineated 17 antiviral RBPs, including ZC3HAV1, TRIM25, PARP12, and SHFL, and 8 proviral RBPs, such as EIF3D and CSDE1, which are responsible for co-opting multiple steps of the mRNA life cycle. This also led to the identification of LARP1, a downstream target of the mTOR signaling pathway, as an antiviral host factor that interacts with the SARS-CoV-2 RNAs. Overall, this study provides a comprehensive list of RBPs regulating coronaviral replication and opens new avenues for therapeutic interventions.


Subject(s)
Autoantigens/genetics , COVID-19/genetics , RNA, Viral/genetics , Ribonucleoproteins/genetics , SARS-CoV-2/genetics , COVID-19/virology , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/pathogenicity , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Protein Binding/genetics , Protein Interaction Maps/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/pathogenicity , TOR Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Transcriptome/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Virus Replication/genetics
18.
Int J Pharm ; 601: 120536, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1157426

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life threatening respiratory disease associated with pulmonary edema, alveolar dysfunction, hypoxia, and inflammatory cell accumulation. The most contagious form of COVID-19 associated with ARDS caused by SARS-CoV-2. SARS-CoV-2 majorly produces the cytokine storm and severe lung inflammation and ultimately leads to respiratory failure. ARDS is a complex disease and there is no proper therapeutics for effective therapy. Still, there is a huge scope to identify novel targets to combat respiratory illness. In the current study, we have identified the epigenetic regulating protein BRD4 and developed siRNA based nanomedicine to treat the ARDS. The liposomes were prepared by thin-film hydration method, where BRD4 siRNA complexed with cationic lipid and exhibited 96.24 ± 18.01 nm size and stable even in the presence of RNase. BRD4 siRNA lipoplexes (BRD4-siRNA-LP) inhibited inflammatory cells in lungs and suppressed the lipopolysaccharide (LPS) induced the neutrophil infiltration and mast cell accumulation. Also, BRD4 siRNA based nanomedicine significantly reduced the LPS induced cytokine storm followed by inflammatory signaling pathways. Interestingly, BRD4-siRNA-LP suppressed the LPS-induced p65 and STAT3 nuclear translocation and ameliorated the lung inflammation. Thus, BRD4-siRNA-LP could be a plausible therapeutic option for treating ARDS and might be useful for combating the COVID-19 associated respiratory illness.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cell Cycle Proteins , Humans , Lipopolysaccharides , Nuclear Proteins , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Transcription Factors/genetics
19.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154425

ABSTRACT

The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in over 2.2 million deaths. Disease outcomes range from asymptomatic to severe with, so far, minimal genotypic change to the virus so understanding the host response is paramount. Transcriptomics has become incredibly important in understanding host-pathogen interactions; however, post-transcriptional regulation plays an important role in infection and immunity through translation and mRNA stability, allowing tight control over potent host responses by both the host and the invading virus. Here, we apply ribosome profiling to assess post-transcriptional regulation of host genes during SARS-CoV-2 infection of a human lung epithelial cell line (Calu-3). We have identified numerous transcription factors (JUN, ZBTB20, ATF3, HIVEP2 and EGR1) as well as select antiviral cytokine genes, namely IFNB1, IFNL1,2 and 3, IL-6 and CCL5, that are restricted at the post-transcriptional level by SARS-CoV-2 infection and discuss the impact this would have on the host response to infection. This early phase restriction of antiviral transcripts in the lungs may allow high viral load and consequent immune dysregulation typically seen in SARS-CoV-2 infection.


Subject(s)
Cytokines/genetics , RNA Processing, Post-Transcriptional , Ribosomes/metabolism , Ribosomes/virology , SARS-CoV-2/immunology , Transcription Factors/genetics , Animals , Antiviral Agents/antagonists & inhibitors , Cell Line, Tumor , Chlorocebus aethiops , Computational Biology , Cytokines/metabolism , Epithelial Cells/immunology , Epithelial Cells/virology , Gene Expression Profiling , Host Microbial Interactions , Humans , Immunity, Innate/genetics , Lung/immunology , Lung/virology , RNA, Messenger/metabolism , RNA-Seq , Ribosomes/genetics , SARS-CoV-2/metabolism , Transcription Factors/metabolism , Transcriptome , Vero Cells
20.
FASEB J ; 35(4): e21384, 2021 04.
Article in English | MEDLINE | ID: covidwho-1132575

ABSTRACT

Novel coronary pneumonia (COVID-19) is a respiratory distress syndrome caused by a new type of coronavirus. Understanding the genetic basis of susceptibility and prognosis to COVID-19 is of great significance to disease prevention, molecular typing, prognosis, and treatment. However, so far, there have been only two genome-wide association studies (GWASs) on the susceptibility of COVID-19. Starting with these reported DNA variants, we found the genes regulated by these variants through cis-eQTL and cis-meQTL acting. We further did a series of bioinformatics analysis on these potential risk genes. The analysis shows that the genetic variants on EHF regulate the expression of its neighbor CAT gene via cis-eQTL. There was significant evidence that CAT and the SARS-CoV-2-related S protein binding protein ACE2 interact with each other. Intracellular localization results showed that CAT and ACE2 proteins both exists in the cell membrane and extracellular area and their interaction could have an impact on the cell invasion ability of S protein. In addition, the expression of these three genes showed a significant positive correlation in the lungs. Based on these results, we propose that CAT plays a crucial intermediary role in binding effectiveness of ACE2, thereby affecting the susceptibility to COVID-19.


Subject(s)
COVID-19 , Catalase , Gene Expression Regulation, Enzymologic , Genetic Predisposition to Disease , Polymorphism, Genetic , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/metabolism , Catalase/biosynthesis , Catalase/genetics , Female , Genome-Wide Association Study , Humans , Male , Retrospective Studies , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL