Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Allergy Clin Immunol ; 149(3): 923-933.e6, 2022 03.
Article in English | MEDLINE | ID: covidwho-1560006

ABSTRACT

BACKGROUND: Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. OBJECTIVES: We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. METHODS: ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein-pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. RESULTS: OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein-pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. CONCLUSIONS: OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19/prevention & control , Cell Extracts/administration & dosage , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Caco-2 Cells , Cell Extracts/immunology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/virology , HEK293 Cells , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , In Vitro Techniques , Lung/drug effects , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Serine Endopeptidases/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Transcription, Genetic/drug effects , Transcription, Genetic/immunology , Vero Cells
2.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510600

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
3.
Emerg Microbes Infect ; 10(1): 1320-1330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1266083

ABSTRACT

Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.


Subject(s)
Gene Expression Regulation/immunology , Hemorrhagic Fever, Ebola/veterinary , Macaca fascicularis , Macaca mulatta , Monkey Diseases/immunology , Transcription, Genetic/immunology , Animals , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/mortality , Humans , Immunity , Monkey Diseases/genetics , Monkey Diseases/mortality , RNA, Viral/metabolism , SARS-CoV-2 , Species Specificity
4.
J Biol Chem ; 296: 100687, 2021.
Article in English | MEDLINE | ID: covidwho-1198855

ABSTRACT

Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/drug therapy , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , NF-kappa B/genetics , Receptors, Glucocorticoid/genetics , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Gene Expression Regulation , Genomics/methods , Humans , Inflammation/prevention & control , Models, Genetic , NF-kappa B/antagonists & inhibitors , NF-kappa B/immunology , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/immunology , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription, Genetic/drug effects , Transcription, Genetic/immunology
5.
Genes (Basel) ; 11(12)2020 12 01.
Article in English | MEDLINE | ID: covidwho-1024546

ABSTRACT

Worldwide COVID-19 epidemiology data indicate differences in disease incidence amongst sex and gender demographic groups. Specifically, male patients are at a higher death risk than female patients, and the older population is significantly more affected than young individuals. Whether this difference is a consequence of a pre-existing differential response to the virus, has not been studied in detail. We created DeCovid, an R shiny app that combines gene expression (GE) data of different human tissue from the Genotype-Tissue Expression (GTEx) project along with the COVID-19 Disease Map and COVID-19 related pathways gene collections to explore basal GE differences across healthy demographic groups. We used this app to study differential gene expression of COVID-19 associated genes in different age and sex groups. We identified that healthy women show higher expression-levels of interferon genes. Conversely, healthy men exhibit higher levels of proinflammatory cytokines. Additionally, young people present a stronger complement system and maintain a high level of matrix metalloproteases than older adults. Our data suggest the existence of different basal immunophenotypes amongst different demographic groups, which are relevant to COVID-19 progression and may contribute to explaining sex and age biases in disease severity. The DeCovid app is an effective and easy to use tool for exploring the GE levels relevant to COVID-19 across demographic groups and tissues.


Subject(s)
COVID-19 , Databases, Nucleic Acid , SARS-CoV-2 , Sex Characteristics , Software , Transcription, Genetic/immunology , Adolescent , Adult , Aged , COVID-19/genetics , COVID-19/immunology , Female , Humans , Interferons/genetics , Interferons/immunology , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology
6.
Front Immunol ; 11: 606456, 2020.
Article in English | MEDLINE | ID: covidwho-983712

ABSTRACT

For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.


Subject(s)
Interferon Type I/immunology , Protein Biosynthesis/immunology , Signal Transduction/immunology , Transcription, Genetic/immunology , Animals , Humans , Janus Kinases/immunology , STAT Transcription Factors/immunology
7.
PLoS One ; 15(12): e0242900, 2020.
Article in English | MEDLINE | ID: covidwho-953000

ABSTRACT

COVID-19, caused by SARS-CoV-2, has rapidly spread to more than 160 countries worldwide since 2020. Despite tremendous efforts and resources spent worldwide trying to explore antiviral drugs, there is still no effective clinical treatment for COVID-19 to date. Approximately 15% of COVID-19 cases progress to pneumonia, and patients with severe pneumonia may die from acute respiratory distress syndrome (ARDS). It is believed that pulmonary fibrosis from SARS-CoV-2 infection further leads to ARDS, often resulting in irreversible impairment of lung function. If the mechanisms by which SARS-CoV-2 infection primarily causes an immune response or immune cell infiltration can be identified, it may be possible to mitigate excessive immune responses by modulating the infiltration and activation of specific targets, thereby reducing or preventing severe lung damage. However, the extent to which immune cell subsets are significantly altered in the lung tissues of COVID-19 patients remains to be elucidated. This study applied the CIBERSORT-X method to comprehensively evaluate the transcriptional estimated immune infiltration landscape in the lung tissues of COVID-19 patients and further compare it with the lung tissues of patients with idiopathic pulmonary fibrosis (IPF). We found a variety of immune cell subtypes in the COVID-19 group, especially naïve B cells were highly infiltrated. Comparison of functional transcriptomic analyses revealed that non-differentiated naïve B cells may be the main cause of the over-active humoral immune response. Using several publicly available single-cell RNA sequencing data to validate the genetic differences in B-cell populations, it was found that the B-cells collected from COVID-19 patients were inclined towards naïve B-cells, whereas those collected from IPF patients were inclined towards memory B-cells. Further differentiation of B cells between COVID-19 mild and severe patients showed that B cells from severe patients tended to be antibody-secreting cells, and gene expression showed that B cells from severe patients were similar to DN2 B cells that trigger extrafollicular response. Moreover, a higher percentage of B-cell infiltration seems associated with poorer clinical outcome. Finally, a comparison of several specific COVID-19 cases treated with targeted B-cell therapy suggests that appropriate suppression of naïve B cells might potentially be a novel strategy to alleviate the severe symptoms of COVID-19.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Computer Simulation , Lung/immunology , Lung/virology , Humans , Idiopathic Pulmonary Fibrosis/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Transcription, Genetic/immunology
8.
Cells ; 9(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-732817

ABSTRACT

Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.


Subject(s)
Aminopeptidases/genetics , Betacoronavirus/immunology , Coronavirus Infections/genetics , Immunization/methods , Leukocytes, Mononuclear/virology , Macrophages/virology , Pneumonia, Viral/genetics , Protein Isoforms/genetics , Antigen Presentation/genetics , Blood Donors , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , Gene Expression/immunology , Genotype , HIV Infections/genetics , HIV Infections/virology , HIV-1/immunology , Humans , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Minor Histocompatibility Antigens/genetics , Pandemics , Pneumonia, Viral/virology , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2 , Transcription, Genetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL