Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nat Commun ; 13(1): 882, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692614

ABSTRACT

SARS-CoV-2 triggers a complex systemic immune response in circulating blood mononuclear cells. The relationship between immune cell activation of the peripheral compartment and survival in critical COVID-19 remains to be established. Here we use single-cell RNA sequencing and Cellular Indexing of Transcriptomes and Epitomes by sequence mapping to elucidate cell type specific transcriptional signatures that associate with and predict survival in critical COVID-19. Patients who survive infection display activation of antibody processing, early activation response, and cell cycle regulation pathways most prominent within B-, T-, and NK-cell subsets. We further leverage cell specific differential gene expression and machine learning to predict mortality using single cell transcriptomes. We identify interferon signaling and antigen presentation pathways within cDC2 cells, CD14 monocytes, and CD16 monocytes as predictors of mortality with 90% accuracy. Finally, we validate our findings in an independent transcriptomics dataset and provide a framework to elucidate mechanisms that promote survival in critically ill COVID-19 patients. Identifying prognostic indicators among critical COVID-19 patients holds tremendous value in risk stratification and clinical management.


Subject(s)
COVID-19/immunology , Immunity, Cellular/immunology , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/mortality , Critical Illness , Female , Gene Expression , Humans , Immunity, Cellular/genetics , Leukocytes, Mononuclear/immunology , Longitudinal Studies , Male , Middle Aged , Prognosis , Reproducibility of Results , SARS-CoV-2/pathogenicity , Single-Cell Analysis , Transcriptome/immunology
2.
Sci Immunol ; 7(68): eabf2846, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1685480

ABSTRACT

Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a superactivated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression and engaging SLAMF7 drove a strong wave of inflammatory cytokine expression. Induction of TNF-α after SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients but also in gut macrophages from patients with active Crohn's disease and in lung macrophages from patients with severe COVID-19. This suggests a central role for SLAMF7 in macrophage superactivation with broad implications in human disease pathology.


Subject(s)
Inflammation/immunology , Macrophage Activation/immunology , Signaling Lymphocytic Activation Molecule Family/immunology , Transcriptome/immunology , Acute Disease , Adult , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chronic Disease , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/metabolism , Female , Humans , Inflammation/genetics , Inflammation/metabolism , Macrophage Activation/genetics , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Signaling Lymphocytic Activation Molecule Family/genetics , Signaling Lymphocytic Activation Molecule Family/metabolism , Single-Cell Analysis/methods , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Transcriptome/genetics
3.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
4.
J Leukoc Biol ; 110(6): 1225-1239, 2021 12.
Article in English | MEDLINE | ID: covidwho-1499280

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-2019 (COVID-19), a respiratory disease that varies in severity from mild to severe/fatal. Several risk factors for severe disease have been identified, notably age, male sex, and pre-existing conditions such as diabetes, obesity, and hypertension. Several advancements in clinical care have been achieved over the past year, including the use of corticosteroids (e.g., corticosteroids) and other immune-modulatory treatments that have now become standard of care for patients with acute severe COVID-19. While the understanding of the mechanisms that underlie increased disease severity with age has improved over the past few months, it remains incomplete. Furthermore, the molecular impact of corticosteroid treatment on host response to acute SARS-CoV-2 infection has not been investigated. In this study, a cross-sectional and longitudinal analysis of Ab, soluble immune mediators, and transcriptional responses in young (65 ≤ years) and aged (≥ 65 years) diabetic males with obesity hospitalized with acute severe COVID-19 was conducted. Additionally, the transcriptional profiles in samples obtained before and after corticosteroids became standard of care were compared. The analysis indicates that severe COVID-19 is characterized by robust Ab responses, heightened systemic inflammation, increased expression of genes related to inflammatory and pro-apoptotic processes, and reduced expression of those important for adaptive immunity regardless of age. In contrast, COVID-19 patients receiving steroids did not show high levels of systemic immune mediators and lacked transcriptional indicators of heightened inflammatory and apoptotic responses. Overall, these data suggest that inflammation and cell death are key drivers of severe COVID-19 pathogenesis in the absence of corticosteroid therapy.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19/drug therapy , COVID-19/immunology , Inflammation/immunology , Transcriptome/drug effects , Adult , Aged , Cross-Sectional Studies , Humans , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2 , Transcriptome/immunology
5.
J Mol Cell Biol ; 13(10): 748-759, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1483467

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global public health crisis. Some patients who have recovered from COVID-19 subsequently test positive again for SARS-CoV-2 RNA after discharge from hospital. How such retest-positive (RTP) patients become infected again is not known. In this study, 30 RTP patients, 20 convalescent patients, and 20 healthy controls were enrolled for the analysis of immunological characteristics of their peripheral blood mononuclear cells. We found that absolute numbers of CD4+ T cells, CD8+ T cells, and natural killer cells were not substantially decreased in RTP patients, but the expression of activation markers on these cells was significantly reduced. The percentage of granzyme B-producing T cells was also lower in RTP patients than in convalescent patients. Through transcriptome sequencing, we demonstrated that high expression of inhibitor of differentiation 1 (ID1) and low expression of interferon-induced transmembrane protein 10 (IFITM10) were associated with insufficient activation of immune cells and the occurrence of RTP. These findings provide insight into the impaired immune function associated with COVID-19 and the pathogenesis of RTP, which may contribute to a better understanding of the mechanisms underlying RTP.


Subject(s)
COVID-19/immunology , Convalescence , Reinfection/immunology , SARS-CoV-2/immunology , Transcriptome/immunology , Adult , Aged , Aged, 80 and over , Antigens, CD/genetics , Antigens, CD/immunology , COVID-19/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing , Case-Control Studies , Female , Healthy Volunteers , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/immunology , Male , Middle Aged , Patient Readmission , RNA, Viral/isolation & purification , Reinfection/genetics , Reinfection/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young Adult
6.
J Leukoc Biol ; 110(6): 1253-1268, 2021 12.
Article in English | MEDLINE | ID: covidwho-1437055

ABSTRACT

Systemic infections, especially in patients with chronic diseases, may result in sepsis: an explosive, uncoordinated immune response that can lead to multisystem organ failure with a high mortality rate. Patients with similar clinical phenotypes or sepsis biomarker expression upon diagnosis may have different outcomes, suggesting that the dynamics of sepsis is critical in disease progression. A within-subject study of patients with Gram-negative bacterial sepsis with surviving and fatal outcomes was designed and single-cell transcriptomic analyses of peripheral blood mononuclear cells (PBMC) collected during the critical period between sepsis diagnosis and 6 h were performed. The single-cell observations in the study are consistent with trends from public datasets but also identify dynamic effects in individual cell subsets that change within hours. It is shown that platelet and erythroid precursor responses are drivers of fatal sepsis, with transcriptional signatures that are shared with severe COVID-19 disease. It is also shown that hypoxic stress is a driving factor in immune and metabolic dysfunction of monocytes and erythroid precursors. Last, the data support CD52 as a prognostic biomarker and therapeutic target for sepsis as its expression dynamically increases in lymphocytes and correlates with improved sepsis outcomes. In conclusion, this study describes the first single-cell study that analyzed short-term temporal changes in the immune cell populations and their characteristics in surviving or fatal sepsis. Tracking temporal expression changes in specific cell types could lead to more accurate predictions of sepsis outcomes and identify molecular biomarkers and pathways that could be therapeutically controlled to improve the sepsis trajectory toward better outcomes.


Subject(s)
COVID-19/immunology , Gram-Negative Bacterial Infections/immunology , Leukocytes , Sepsis/immunology , Transcriptome/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Inflammation/immunology , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Single-Cell Analysis
8.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415923

ABSTRACT

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Subject(s)
COVID-19 , Carrier State/immunology , Lymphocytes/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Transcriptome/immunology , Adolescent , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/genetics
9.
J Allergy Clin Immunol ; 148(5): 1176-1191, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401557

ABSTRACT

BACKGROUND: The risk of severe coronavirus disease 2019 (COVID-19) varies significantly among persons of similar age and is higher in males. Age-independent, sex-biased differences in susceptibility to severe COVID-19 may be ascribable to deficits in a sexually dimorphic protective attribute that we termed immunologic resilience (IR). OBJECTIVE: We sought to examine whether deficits in IR that antedate or are induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection independently predict COVID-19 mortality. METHODS: IR levels were quantified with 2 novel metrics: immune health grades (IHG-I [best] to IHG-IV) to gauge CD8+ and CD4+ T-cell count equilibrium, and blood gene expression signatures. IR metrics were examined in a prospective COVID-19 cohort (n = 522); primary outcome was 30-day mortality. Associations of IR metrics with outcomes in non-COVID-19 cohorts (n = 13,461) provided the framework for linking pre-COVID-19 IR status to IR during COVID-19, as well as to COVID-19 outcomes. RESULTS: IHG-I, tracking high-grade equilibrium between CD8+ and CD4+ T-cell counts, was the most common grade (73%) among healthy adults, particularly in females. SARS-CoV-2 infection was associated with underrepresentation of IHG-I (21%) versus overrepresentation (77%) of IHG-II or IHG-IV, especially in males versus females (P < .01). Presentation with IHG-I was associated with 88% lower mortality, after controlling for age and sex; reduced risk of hospitalization and respiratory failure; lower plasma IL-6 levels; rapid clearance of nasopharyngeal SARS-CoV-2 burden; and gene expression signatures correlating with survival that signify immunocompetence and controlled inflammation. In non-COVID-19 cohorts, IR-preserving metrics were associated with resistance to progressive influenza or HIV infection, as well as lower 9-year mortality in the Framingham Heart Study, especially in females. CONCLUSIONS: Preservation of immunocompetence with controlled inflammation during antigenic challenges is a hallmark of IR and associates with longevity and AIDS resistance. Independent of age, a male-biased proclivity to degrade IR before and/or during SARS-CoV-2 infection predisposes to severe COVID-19.


Subject(s)
COVID-19/immunology , HIV Infections/epidemiology , HIV-1/physiology , Respiratory Insufficiency/epidemiology , SARS-CoV-2/physiology , Sex Factors , T-Lymphocytes/immunology , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , Cohort Studies , Disease Resistance , Female , Humans , Immunocompetence , Interleukin-6/blood , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Survival Analysis , Transcriptome/immunology , United States/epidemiology , Viral Load
10.
Front Immunol ; 12: 681516, 2021.
Article in English | MEDLINE | ID: covidwho-1399136

ABSTRACT

Coronavirus disease 2019 (COVID-19) broke out and then became a global epidemic at the end of 2019. With the increasing number of deaths, early identification of disease severity and interpretation of pathogenesis are very important. Aiming to identify biomarkers for disease severity and progression of COVID-19, 75 COVID-19 patients, 34 healthy controls and 23 patients with pandemic influenza A(H1N1) were recruited in this study. Using liquid chip technology, 48 cytokines and chemokines were examined, among which 33 were significantly elevated in COVID-19 patients compared with healthy controls. HGF and IL-1ß were strongly associated with APACHE II score in the first week after disease onset. IP-10, HGF and IL-10 were correlated positively with virus titers. Cytokines were significantly correlated with creatinine, troponin I, international normalized ratio and procalcitonin within two weeks after disease onset. Univariate analyses were carried out, and 6 cytokines including G-CSF, HGF, IL-10, IL-18, M-CSF and SCGF-ß were found to be associated with the severity of COVID-19. 11 kinds of cytokines could predict the severity of COVID-19, among which IP-10 and M-CSF were excellent predictors for disease severity. In conclusion, the levels of cytokines in COVID-19 were significantly correlated with the severity of the disease in the early stage, and serum cytokines could be used as warning indicators of the severity and progression of COVID-19. Early stratification of disease and intervention to reduce hypercytokinaemia may improve the prognosis of COVID-19 patients.


Subject(s)
COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Transcriptome/immunology , Adult , Aged , Biomarkers/blood , Chemokines/blood , Chemokines/genetics , Chemokines/immunology , Cytokines/blood , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/blood , Influenza, Human/immunology , Male , Middle Aged
11.
Front Immunol ; 12: 716075, 2021.
Article in English | MEDLINE | ID: covidwho-1359192

ABSTRACT

The existence of asymptomatic and re-detectable positive coronavirus disease 2019 (COVID-19) patients presents the disease control challenges of COVID-19. Most studies on immune responses in COVID-19 have focused on moderately or severely symptomatic patients; however, little is known about the immune response in asymptomatic and re-detectable positive (RP) patients. Here we performed a comprehensive analysis of the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from 48 COVID-19 patients which included 8 asymptomatic, 13 symptomatic, 15 recovered and 12 RP patients. The weighted gene co-expression network analysis (WGCNA) identified six co-expression modules, of which the turquoise module was positively correlated with the asymptomatic, symptomatic, and recovered COVID-19 patients. The red module positively correlated with symptomatic patients only and the blue and brown modules positively correlated with the RP patients. The analysis by single sample gene set enrichment analysis (ssGSEA) revealed a lower level of IFN response and complement activation in the asymptomatic patients compared with the symptomatic, indicating a weaker immune response of the PBMCs in the asymptomatic patients. In addition, gene set enrichment analysis (GSEA) analysis showed the enrichment of TNFα/NF-κB and influenza infection in the RP patients compared with the recovered patients, indicating a hyper-inflammatory immune response in the PBMC of RP patients. Thus our findings could extend our understanding of host immune response during the progression of COVID-19 disease and assist clinical management and the immunotherapy development for COVID-19.


Subject(s)
Asymptomatic Diseases , COVID-19/immunology , Carrier State/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , Transcriptome/genetics , Adult , Carrier State/virology , Complement Activation/immunology , Female , Gene Expression Profiling , Humans , Inflammation/immunology , Influenza, Human/complications , Interferons/blood , Interferons/immunology , Male , Middle Aged , NF-kappa B/metabolism , Transcriptome/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
12.
Nat Commun ; 12(1): 4854, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354099

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Systemic Inflammatory Response Syndrome/immunology , Transcriptome/immunology , Adolescent , CD56 Antigen/metabolism , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Child , Child, Preschool , Down-Regulation , Female , Humans , Infant , Infant, Newborn , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/genetics , Young Adult
13.
Hum Genet ; 140(9): 1313-1328, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1279450

ABSTRACT

The coronavirus disease 2019 (COVID-19) is an infectious disease that mainly affects the host respiratory system with ~ 80% asymptomatic or mild cases and ~ 5% severe cases. Recent genome-wide association studies (GWAS) have identified several genetic loci associated with the severe COVID-19 symptoms. Delineating the genetic variants and genes is important for better understanding its biological mechanisms. We implemented integrative approaches, including transcriptome-wide association studies (TWAS), colocalization analysis, and functional element prediction analysis, to interpret the genetic risks using two independent GWAS datasets in lung and immune cells. To understand the context-specific molecular alteration, we further performed deep learning-based single-cell transcriptomic analyses on a bronchoalveolar lavage fluid (BALF) dataset from moderate and severe COVID-19 patients. We discovered and replicated the genetically regulated expression of CXCR6 and CCR9 genes. These two genes have a protective effect on lung, and a risk effect on whole blood, respectively. The colocalization analysis of GWAS and cis-expression quantitative trait loci highlighted the regulatory effect on CXCR6 expression in lung and immune cells. In the lung-resident memory CD8+ T (TRM) cells, we found a 2.24-fold decrease of cell proportion among CD8+ T cells and lower expression of CXCR6 in the severe patients than moderate patients. Pro-inflammatory transcriptional programs were highlighted in the TRM cellular trajectory from moderate to severe patients. CXCR6 from the 3p21.31 locus is associated with severe COVID-19. CXCR6 tends to have a lower expression in lung TRM cells of severe patients, which aligns with the protective effect of CXCR6 from TWAS analysis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 , Immunologic Memory/genetics , Lung/immunology , Quantitative Trait Loci/immunology , Receptors, CXCR6 , SARS-CoV-2/immunology , Transcriptome/immunology , COVID-19/genetics , COVID-19/immunology , Female , Genome-Wide Association Study , Humans , Lung/virology , Male , Receptors, CCR/genetics , Receptors, CCR/immunology , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Risk Factors , Severity of Illness Index
14.
Cell ; 184(13): 3573-3587.e29, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1248834

ABSTRACT

The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce "weighted-nearest neighbor" analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.


Subject(s)
SARS-CoV-2/immunology , Single-Cell Analysis/methods , 3T3 Cells , Animals , COVID-19/immunology , Cell Line , Gene Expression Profiling/methods , Humans , Immunity/immunology , Leukocytes, Mononuclear/immunology , Lymphocytes/immunology , Mice , Sequence Analysis, RNA/methods , Transcriptome/immunology , Vaccination
15.
Sci Rep ; 11(1): 4243, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1091458

ABSTRACT

SARS-CoV-2 infection ranges from asymptomatic to severe with lingering symptomatology in some. This prompted investigation of whether or not asymptomatic disease results in measurable immune activation post-infection. Immune activation following asymptomatic SARS-CoV-2 infection was characterized through a comparative investigation of the immune cell transcriptomes from 43 asymptomatic seropositive and 52 highly exposed seronegative individuals from the same community 4-6 weeks following a superspreading event. Few of the 95 individuals had underlying health issues. One seropositive individual reported Cystic Fibrosis and one individual reported Incontinentia pigmenti. No evidence of immune activation was found in asymptomatic seropositive individuals with the exception of the Cystic Fibrosis patient. There were no statistically significant differences in immune transcriptomes between asymptomatic seropositive and highly exposed seronegative individuals. Four positive controls, mildly symptomatic seropositive individuals whose blood was examined 3 weeks following infection, showed immune activation. Negative controls were four seronegative individuals from neighboring communities without COVID-19. All individuals remained in their usual state of health through a five-month follow-up after sample collection. In summary, whole blood transcriptomes identified individual immune profiles within a community population and showed that asymptomatic infection within a super-spreading event was not associated with enduring immunological activation.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Transcriptome/immunology , Adaptive Immunity/genetics , Adolescent , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/isolation & purification , Asymptomatic Infections , Austria , COVID-19/blood , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Serological Testing/statistics & numerical data , Child , Child, Preschool , Contact Tracing/statistics & numerical data , Family Characteristics , Female , Follow-Up Studies , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Innate/genetics , Infant , Male , Middle Aged , RNA-Seq/statistics & numerical data , SARS-CoV-2/isolation & purification , Young Adult
16.
Cell ; 184(7): 1836-1857.e22, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1077815

ABSTRACT

COVID-19 exhibits extensive patient-to-patient heterogeneity. To link immune response variation to disease severity and outcome over time, we longitudinally assessed circulating proteins as well as 188 surface protein markers, transcriptome, and T cell receptor sequence simultaneously in single peripheral immune cells from COVID-19 patients. Conditional-independence network analysis revealed primary correlates of disease severity, including gene expression signatures of apoptosis in plasmacytoid dendritic cells and attenuated inflammation but increased fatty acid metabolism in CD56dimCD16hi NK cells linked positively to circulating interleukin (IL)-15. CD8+ T cell activation was apparent without signs of exhaustion. Although cellular inflammation was depressed in severe patients early after hospitalization, it became elevated by days 17-23 post symptom onset, suggestive of a late wave of inflammatory responses. Furthermore, circulating protein trajectories at this time were divergent between and predictive of recovery versus fatal outcomes. Our findings stress the importance of timing in the analysis, clinical monitoring, and therapeutic intervention of COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Gene Expression/immunology , Killer Cells, Natural/metabolism , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , COVID-19/mortality , Case-Control Studies , Dendritic Cells/cytology , Female , Humans , Killer Cells, Natural/cytology , Longitudinal Studies , Male , Middle Aged , Transcriptome/immunology , Young Adult
17.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1062273

ABSTRACT

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Subject(s)
COVID-19/immunology , Megakaryocytes/immunology , Monocytes/immunology , RNA, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Cohort Studies , Cytokines/metabolism , Female , Humans , Male , Middle Aged , RNA, Viral/blood , RNA, Viral/isolation & purification , Single-Cell Analysis , Transcriptome/immunology , Young Adult
18.
Genomics ; 113(2): 564-575, 2021 03.
Article in English | MEDLINE | ID: covidwho-1057515

ABSTRACT

The recent outbreak of coronavirus disease 2019 (COVID-19) by SARS-CoV-2 has led to uptodate 24.3 M cases and 0.8 M deaths. It is thus in urgent need to rationalize potential therapeutic targets against the progression of diseases. An effective, feasible way is to use the pre-existing ΔORF6 mutant of SARS-CoV as a surrogate for SARS-CoV-2, since both lack the moiety responsible for interferon antagonistic effects. By analyzing temporal profiles of upregulated genes in ΔORF6-infected Calu-3 cells, we prioritized 55 genes and 238 ligands to reposition currently available medications for COVID-19 therapy. Eight of them are already in clinical trials, including dexamethasone, ritonavir, baricitinib, tofacitinib, naproxen, budesonide, ciclesonide and formoterol. We also pinpointed 16 drug groups from the Anatomical Therapeutic Chemical classification system, with the potential to mitigate symptoms of SARS-CoV-2 infection and thus to be repositioned for COVID-19 therapy.


Subject(s)
COVID-19/drug therapy , Gene Expression Profiling , Immunologic Factors/pharmacology , SARS-CoV-2/immunology , Transcriptome/drug effects , COVID-19/immunology , Cell Line , Humans , Transcriptome/immunology
19.
Stem Cells Transl Med ; 10(4): 568-571, 2021 04.
Article in English | MEDLINE | ID: covidwho-996305

ABSTRACT

The use of mesenchymal stem cells (MSC) derived from several sources has been suggested as a major anti-inflammation strategy during the recent outbreak of coronavirus-19 (COVID-19). As the virus enters the target cells through the receptor ACE2, it is important to determine if the MSC population transfused to patients could also be a target for the virus entry. We report here that ACE2 is highly expressed in adult bone marrow, adipose tissue, or umbilical cord-derived MSC. On the other hand, placenta-derived MSC express low levels of ACE2 but only in early passages of cultures. MSC derived from human embryonic stem cell or human induced pluripotent stem cells express also very low levels of ACE2. The transcriptome analysis of the MSCs with lowest expression of ACE2 in fetal-like MSCs is found to be associated in particularly with an anti-inflammatory signature. These results are of major interest for designing future clinical MSC-based stem cell therapies for severe COVID-19 infections.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells , SARS-CoV-2/immunology , Transcriptome/immunology , Adult , Female , Humans , Infant, Newborn , Male , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/virology , Organ Specificity/immunology
SELECTION OF CITATIONS
SEARCH DETAIL