Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1580414

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a severe global pandemic. Mice models are essential to investigate infection pathology, antiviral drugs, and vaccine development. However, wild-type mice lack the human angiotensin-converting enzyme 2 (hACE2) that mediates SARS-CoV-2 entry into human cells and consequently are not susceptible to SARS-CoV-2 infection. hACE2 transgenic mice could provide an efficient COVID-19 model, but are not always readily available, and practically restricted to specific strains. Therefore, there is a dearth of additional mouse models for SARS-CoV-2 infection. We applied lentiviral vectors to generate hACE2 expression in interferon receptor knock-out (IFNAR1-/-) mice. Lenti-hACE2 transduction supported SARS-CoV-2 replication in vivo, simulating mild acute lung disease. Gene expression analysis revealed two modes of immune responses to SARS-CoV-2 infection: one in response to the exposure of mouse lungs to SARS-CoV-2 particles in the absence of productive viral replication, and the second in response to productive SARS-CoV-2 infection. Our results infer that immune response to immunogenic elements on incoming virus or in productively infected cells stimulate diverse immune effectors, even in absence of type I IFN signaling. Our findings should contribute to a better understanding of the immune response triggered by SARS-CoV-2 and to further elucidate COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , Disease Models, Animal , Lentivirus/genetics , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cell Line , Humans , Immunity/genetics , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , Receptor, Interferon alpha-beta/genetics , Transduction, Genetic , Virus Replication
2.
N Engl J Med ; 385(24): 2264-2270, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1560911

ABSTRACT

Inherited junctional epidermolysis bullosa is a severe genetic skin disease that leads to epidermal loss caused by structural and mechanical fragility of the integuments. There is no established cure for junctional epidermolysis bullosa. We previously reported that genetically corrected autologous epidermal cultures regenerated almost an entire, fully functional epidermis on a child who had a devastating form of junctional epidermolysis bullosa. We now report long-term clinical outcomes in this patient. (Funded by POR FESR 2014-2020 - Regione Emilia-Romagna and others.).


Subject(s)
Epidermis/transplantation , Epidermolysis Bullosa, Junctional/therapy , Keratinocytes/transplantation , Transduction, Genetic , Transgenes , Cell Self Renewal , Cells, Cultured/transplantation , Child , Clone Cells , Epidermis/pathology , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Follow-Up Studies , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/therapy , Genetic Therapy , Genetic Vectors , Humans , Keratinocytes/cytology , Keratinocytes/physiology , Male , Regeneration , Stem Cells/physiology , Transplantation, Autologous
3.
Viruses ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: covidwho-1390787

ABSTRACT

The rapid spread of the pandemic caused by the SARS-CoV-2 virus has created an unusual situation, with rapid searches for compounds to interfere with the biological processes exploited by the virus. Doxycycline, with its pleiotropic effects, including anti-viral activity, has been proposed as a therapeutic candidate for COVID-19 and about twenty clinical trials have started since the beginning of the pandemic. To gain information on the activity of doxycycline against SARS-CoV-2 infection and clarify some of the conflicting clinical data published, we designed in vitro binding tests and infection studies with a pseudotyped virus expressing the spike protein, as well as a clinically isolated SARS-CoV-2 strain. Doxycycline inhibited the transduction of the pseudotyped virus in Vero E6 and HEK-293 T cells stably expressing human receptor angiotensin-converting enzyme 2 but did not affect the entry and replication of SARS-CoV-2. Although this conclusion is apparently disappointing, it is paradigmatic of an experimental approach aimed at developing an integrated multidisciplinary platform which can shed light on the mechanisms of action of potential anti-COVID-19 compounds. To avoid wasting precious time and resources, we believe very stringent experimental criteria are needed in the preclinical phase, including infectivity studies with clinically isolated SARS-CoV-2, before moving on to (futile) clinical trials.


Subject(s)
COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Physiological Phenomena/drug effects , Virus Replication/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Cell Cycle , Chlorocebus aethiops , Doxycycline/pharmacology , HEK293 Cells , Humans , Protein Binding , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus , Transduction, Genetic , Vero Cells
4.
Viruses ; 13(8)2021 07 28.
Article in English | MEDLINE | ID: covidwho-1376988

ABSTRACT

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D-such as their cellular tropism, receptor usage, and in vivo biodistribution profile-remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)-a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


Subject(s)
Adenoviruses, Human/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Adenoviruses, Human/classification , Adenoviruses, Human/metabolism , Animals , Cell Line , Genes, Reporter , Genetic Therapy/instrumentation , Genetic Vectors/metabolism , Humans , Liver/virology , Lung/virology , Mice , Phylogeny , Spleen/virology , Transduction, Genetic
5.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Article in English | MEDLINE | ID: covidwho-1352713

ABSTRACT

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Disease Models, Animal , 3T3 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Chlorocebus aethiops , Dependovirus/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transduction, Genetic , Vero Cells
6.
PLoS Pathog ; 17(7): e1009723, 2021 07.
Article in English | MEDLINE | ID: covidwho-1295527

ABSTRACT

SARS-CoV-2 uses the human ACE2 (hACE2) receptor for cell attachment and entry, with mouse ACE2 (mACE2) unable to support infection. Herein we describe an ACE2-lentivirus system and illustrate its utility for in vitro and in vivo SARS-CoV-2 infection models. Transduction of non-permissive cell lines with hACE2 imparted replication competence, and transduction with mACE2 containing N30D, N31K, F83Y and H353K substitutions, to match hACE2, rescued SARS-CoV-2 replication. Intrapulmonary hACE2-lentivirus transduction of C57BL/6J mice permitted significant virus replication in lung epithelium. RNA-Seq and histological analyses illustrated that this model involved an acute inflammatory disease followed by resolution and tissue repair, with a transcriptomic profile similar to that seen in COVID-19 patients. hACE2-lentivirus transduction of IFNAR-/- and IL-28RA-/- mouse lungs was used to illustrate that loss of type I or III interferon responses have no significant effect on virus replication. However, their importance in driving inflammatory responses was illustrated by RNA-Seq analyses. We also demonstrate the utility of the hACE2-lentivirus transduction system for vaccine evaluation in C57BL/6J mice. The ACE2-lentivirus system thus has broad application in SARS-CoV-2 research, providing a tool for both mutagenesis studies and mouse model development.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Gene Expression Profiling , Lentivirus , SARS-CoV-2 , Transduction, Genetic , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Disease Models, Animal , Humans , Mice , Mice, Knockout , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
7.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: covidwho-1048660

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Drug Evaluation, Preclinical , Enoxaparin/chemistry , Enoxaparin/metabolism , Enoxaparin/pharmacology , Genetic Vectors/genetics , HEK293 Cells , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/metabolism , Humans , Inhibitory Concentration 50 , Lentivirus/genetics , Molecular Structure , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Transduction, Genetic , Virus Attachment/drug effects
8.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Article in English | MEDLINE | ID: covidwho-1004249

ABSTRACT

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Subject(s)
Alveolar Epithelial Cells/immunology , COVID-19/immunology , Gene Expression , SARS-CoV-2/immunology , Signal Transduction/immunology , Adenoviridae/genetics , Adenoviridae/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Signal Transduction/genetics , Transduction, Genetic
9.
Sci Rep ; 10(1): 22370, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-997940

ABSTRACT

There are currently few approved effective treatments for SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Nanobodies are 12-15 kDa single-domain antibody fragments that can be delivered by inhalation and are amenable to relatively inexpensive large scale production compared to other biologicals. We have isolated nanobodies that bind to the SARS-CoV-2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) with 1-5 nM affinity. The lead nanobody candidate, NIH-CoVnb-112, blocks SARS-CoV-2 spike pseudotyped lentivirus infection of HEK293 cells expressing human ACE2 with an EC50 of 0.3 µg/mL. NIH-CoVnb-112 retains structural integrity and potency after nebulization. Furthermore, NIH-CoVnb-112 blocks interaction between ACE2 and several high affinity variant forms of the spike protein. These nanobodies and their derivatives have therapeutic, preventative, and diagnostic potential.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antibody Affinity , COVID-19/metabolism , Drug Discovery/methods , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/chemistry , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/immunology , Binding Sites, Antibody/immunology , COVID-19/therapy , COVID-19/virology , Camelids, New World , HEK293 Cells , Humans , Immunization/methods , Male , Protein Binding , Signal Transduction/genetics , Spike Glycoprotein, Coronavirus/genetics , Transduction, Genetic , Transfection
10.
Sci Rep ; 10(1): 19076, 2020 11 05.
Article in English | MEDLINE | ID: covidwho-912909

ABSTRACT

Pseuodotyped particles have significant importance and use in virology as tools for studying the biology of highly pathogenic viruses in a lower biosafety environment. The biological, chemical, and serological studies of the recently emerged SARS-CoV-2 will be greatly aided by the development and optimization of a suitable pseudotyping system. Here, we pseudotyped the SARS-CoV-2 Spike glycoprotein (SPG) on a traditional retroviral (MMLV) as well as a third generation lentiviral (pLV) vector and tested the transduction efficiency in several mammalian cell lines expressing SARS-CoV-2 receptor hACE2. While MMLV pseudotyped the vesicular stomatitis virus G glycoprotein (VSV-G) efficiently, it could not pseudotype the full-length SPG. In contrast, pLV pseudotyped both glycoproteins efficiently; however, much higher titers of pLV-G particles were produced. Among all the tested mammalian cells, 293Ts expressing hACE2 were most efficiently transduced using the pLV-S system. The pLV-S particles were efficiently neutralized by diluted serum (>:640) from recently recovered COVID-19 patients who showed high SARS-CoV-2 specific IgM and IgG levels. In summary, pLV-S pseudotyped virus provides a valid screening tool for the presence of anti SARS-CoV-2 specific neutralizing antibodies in convalescent patient serum.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Lentivirus/genetics , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Genetic Vectors/genetics , Humans , SARS-CoV-2 , Transduction, Genetic
12.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-592236

ABSTRACT

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/pathology , Pneumonia, Viral/prevention & control , Vaccination , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Drug Evaluation, Preclinical/methods , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , SARS-CoV-2 , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Specific Pathogen-Free Organisms , Transduction, Genetic , Vero Cells , Viral Load , Virus Replication
13.
Cell ; 182(3): 744-753.e4, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-592074

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of human infections. One limitation to the evaluation of potential therapies and vaccines to inhibit SARS-CoV-2 infection and ameliorate disease is the lack of susceptible small animals in large numbers. Commercially available laboratory strains of mice are not readily infected by SARS-CoV-2 because of species-specific differences in their angiotensin-converting enzyme 2 (ACE2) receptors. Here, we transduced replication-defective adenoviruses encoding human ACE2 via intranasal administration into BALB/c mice and established receptor expression in lung tissues. hACE2-transduced mice were productively infected with SARS-CoV-2, and this resulted in high viral titers in the lung, lung pathology, and weight loss. Passive transfer of a neutralizing monoclonal antibody reduced viral burden in the lung and mitigated inflammation and weight loss. The development of an accessible mouse model of SARS-CoV-2 infection and pathogenesis will expedite the testing and deployment of therapeutics and vaccines.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/therapy , Disease Models, Animal , Pneumonia, Viral/therapy , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Female , HEK293 Cells , Humans , Immunization, Passive/methods , Lung/metabolism , Lung/virology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Transduction, Genetic , Vero Cells , Viral Load/immunology
14.
J Med Virol ; 92(9): 1609-1614, 2020 09.
Article in English | MEDLINE | ID: covidwho-46751

ABSTRACT

Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans in late 2019, it has rapidly spread worldwide. To identify the biological characteristics of SARS-CoV-2 in a normal laboratory environment (biosafety level 2 [BSL-2]), a lentiviral-based nucleocapsid was used to carry the spike protein of SARS-CoV-2 onto the surface of pseudoviral particles as a surrogate model to evaluate the infective characterization of SARS-CoV-2. This study indicated that SARS-CoV-2 has extensive tissue tropism for humans and may infect monkeys and tree shrews but not rodents. More importantly, the use of pseudoviral particles in this study allows rapid assessment of neutralizing antibodies in serum in a BSL-2 laboratory. This study will provide a quick and easy tool for evaluating neutralizing antibodies in the serum of recovering patients and assessing the potency of candidate vaccines.


Subject(s)
COVID-19/virology , Genetic Engineering , Recombination, Genetic , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Cell Line , Cells, Cultured , Genes, Reporter , Humans , Neutralization Tests , Organ Specificity , SARS-CoV-2/physiology , Species Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Transduction, Genetic , Viral Vaccines , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL