Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
2.
Front Immunol ; 13: 1001198, 2022.
Article in English | MEDLINE | ID: covidwho-2326316

ABSTRACT

Background: There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. Methods: This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. Results: Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-ß), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. Conclusions: It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.


Subject(s)
COVID-19 , Humans , Programmed Cell Death 1 Receptor , SARS-CoV-2 , Interleukin-10 , Interleukin-15 , Interleukin-17 , Interleukin-13 , Tumor Necrosis Factor-alpha , Cross-Sectional Studies , Critical Illness , Ligands , Interleukin-2 , Interleukin-4 , Interleukin-5 , Interleukin-7 , Adaptive Immunity , HLA-DR Antigens , Interleukin-23 , Inflammation Mediators , Transforming Growth Factor beta , Immunoglobulins
3.
Front Immunol ; 13: 988685, 2022.
Article in English | MEDLINE | ID: covidwho-2325503

ABSTRACT

Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information. Methods: Gene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD. Results: The best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and Transforming growth factor beta (TGF-ß) signalling. Conclusions: Gene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naïve patients with COVID-19.


Subject(s)
COVID-19 , COVID-19/genetics , ErbB Receptors , Gene Expression , Humans , Intensive Care Units , PPAR alpha , Pandemics , Transforming Growth Factor beta
4.
Front Immunol ; 13: 1039120, 2022.
Article in English | MEDLINE | ID: covidwho-2323081

ABSTRACT

Natural Killer (NK) cells are key innate effectors of antiviral immune response, and their activity changes in ageing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated the age-related changes of NK cell phenotype and function during SARS-CoV-2 infection, by comparing adult and elderly patients both requiring mechanical ventilation. Adult patients had a reduced number of total NK cells, while elderly showed a peculiar skewing of NK cell subsets towards the CD56lowCD16high and CD56neg phenotypes, expressing activation markers and check-point inhibitory receptors. Although NK cell degranulation ability is significantly compromised in both cohorts, IFN-γ production is impaired only in adult patients in a TGF-ß-dependent manner. This inhibitory effect was associated with a shorter hospitalization time of adult patients suggesting a role for TGF-ß in preventing an excessive NK cell activation and systemic inflammation. Our data highlight an age-dependent role of NK cells in shaping SARS-CoV-2 infection toward a pathophysiological evolution.


Subject(s)
COVID-19 , Skin Diseases , Humans , SARS-CoV-2 , Killer Cells, Natural , Transforming Growth Factor beta
5.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: covidwho-2308562

ABSTRACT

AIMS: To evaluate the effects of the Qingwen Gupi decoction (QGT) in a rat model of bleomycin-induced pulmonary fibrosis (PF), and explore the underlying mechanisms by integrating UPLC-Q-TOF/MS metabolomics and 16S rDNA sequencing of gut microbiota. METHODS AND RESULTS: The animals were randomly divided into the control, PF model, pirfenidone-treated, and low-, medium-, and high-dose QGT groups. The lung tissues were examined and the expression of TGF-ß, SMAD-3, and SMAD-7 mRNAs in the lung tissues were analyzed. Metabolomic profiles were analyzed by UPLC-QTOF/MS, and the intestinal flora were examined by prokaryotic 16 rDNA sequencing. Pathological examination and biochemical indices revealed that QGT treatment improved the symptoms of PF by varying degrees. Furthermore, QGT significantly downregulated TGF-ß1 and Smad-3 mRNAs and increased the expression levels of Smad-7. QGT-L in particular increased the levels of 18 key metabolic biomarkers that were associated with nine gut microbial species and may exert antifibrosis effects through arachidonic acid metabolism, glycerophospholipid metabolism, and phenylalanine metabolism. CONCLUSIONS: QGT alleviated PF in a rat model through its anti-inflammatory, antioxidant, and anti-fibrotic effects, and by reversing bleomycin-induced gut dysbiosis.This study lays the foundation for further research on the pathological mechanisms of PF and the development of new drug candidates.


Subject(s)
Gastrointestinal Microbiome , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Lung , Bleomycin/adverse effects , Transforming Growth Factor beta/metabolism , Metabolomics
6.
BMC Infect Dis ; 23(1): 248, 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2290462

ABSTRACT

BACKGROUND: Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-ß (TGF-ß) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS: This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-ß, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS: The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-ß serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS: These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-ß- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.


Subject(s)
COVID-19 , Interferon Type I , Neoplasms , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
7.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: covidwho-2281036

ABSTRACT

Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFß or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFß and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFß and IFNα levels in COVID-19 infection associated with disease severity.


Subject(s)
COVID-19 , Cell Proliferation , Humans , Killer Cells, Natural , Phenotype , TOR Serine-Threonine Kinases , Transforming Growth Factor beta
8.
J Interferon Cytokine Res ; 42(8): 352-368, 2022 08.
Article in English | MEDLINE | ID: covidwho-2277657

ABSTRACT

The costs of coronavirus disease 2019 (COVID-19) are devastating. With millions of deaths worldwide, specific serological biomarkers, antiviral agents, and novel therapies are urgently required to reduce the disease burden. For these purposes, a profound understanding of the pathobiology of COVID-19 is mandatory. Notably, the study of immunity against other respiratory infections has generated reference knowledge to comprehend the paradox of the COVID-19 pathogenesis. Past studies point to a complex interplay between cytokines and other factors mediating wound healing and extracellular matrix (ECM) remodeling that results in exacerbated inflammation, tissue injury, severe manifestations, and a sequela of respiratory infections. This review provides an overview of the immunological process elicited after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Also, we analyzed available data about the participation of matrix metalloproteinases (MMPs) and transforming growth factor-beta (TGF-ß) in immune responses of the lungs. Furthermore, we discuss their possible implications in severe COVID-19 and sequela, including pulmonary fibrosis, and remark on the potential of these molecules as biomarkers for diagnosis, prognosis, and treatment of convalescent COVID-19 patients. Our review provides a theoretical framework for future research aimed to discover molecular hallmarks that, combined with clinical features, could serve as therapeutic targets and reliable biomarkers of the different clinical forms of COVID-19, including convalescence.


Subject(s)
COVID-19 , Matrix Metalloproteinases , Transforming Growth Factor beta , Biomarkers , COVID-19/immunology , Cost of Illness , Humans , Matrix Metalloproteinases/immunology , SARS-CoV-2 , Transforming Growth Factor beta/immunology
9.
Osteoarthritis Cartilage ; 30(12): 1575-1582, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2262066

ABSTRACT

The field of osteoarthritis (OA) biology is rapidly evolving and brilliant progress has been made this year as well. Landmark studies of OA biology published in 2021 and early 2022 were selected through PubMed search by personal opinion. These papers were classified by their molecular mechanisms, and it was largely divided into the intracellular signaling mechanisms and the inter-compartment interaction in chondrocyte homeostasis and OA progression. The intracellular signaling mechanisms involving OA progression included (1) Piezo1/transient receptor potential channels of the vanilloid subtype (TRPV) 4-mediated calcium signaling, (2) mechanical load-F-box and WD repeat domain containing 7 (FBXW7) in chondrocyte senescence, (3) mechanical loading-primary cilia-hedgehog signaling, (4) low grade inflammation by toll-like receptor (TLR)-CD14-lipopolysaccharide-binding protein (LBP) complex and inhibitor of NF-κB kinase (IKK) ß-nuclear factor kappa B (NF-κB) signaling, (5) selenium pathway and reactive oxygen species (ROS) production, (6) G protein-coupled receptor (GPCR) and cyclic adenosine monophosphate (cAMP) signaling, (7) peroxisome proliferator-activated receptor α (PPARα)-acyl-CoA thioesterase 12 (ACOT12)-mediated de novo lipogenesis and (8) hypoxia-disruptor of telomeric silencing 1-like (DOT1L)-H3-lysine 79 (H3K79) methylation pathway. The studies on inter-compartment or intercellular interaction in OA progression included the following subjects; (1) the anabolic role of lubricin, glycoprotein from superficial zone cells, (2) osteoclast-chondrocyte interaction via exosomal miRNA and sphingosine 1-phosphate (S1P), (3) senescent fibroblast-like synoviocyte and chondrocyte interaction, (4) synovial macrophage and chondrocyte interaction through Flightless I, (5) αV integrin-mediated transforming growth factor beta (TGFß) activation by mechanical loading, and (6) osteocytic TGFß in subchondral bone thickening. Despite the disastrous Covid-19 pandemic, many outstanding studies have expanded the boundary of OA biology. They provide both critical insight into the pathophysiology as well as clues for the treatment of OA.


Subject(s)
COVID-19 , Osteoarthritis , Humans , NF-kappa B/metabolism , Hedgehog Proteins , Pandemics , Osteoarthritis/metabolism , Chondrocytes/metabolism , Transforming Growth Factor beta/metabolism , Biology , Ion Channels/metabolism , Thiolester Hydrolases/metabolism
10.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2256618

ABSTRACT

Growth differentiation factor 15 (GDF-15) is a stress-induced transforming growth factor-ß superfamily cytokine with versatile functions in human health. Elevated GDF-15 blood levels associate with multiple pathological conditions, and are currently extensively explored for diagnosis, and as a means to monitor disease progression and evaluate therapeutic responses. This review analyzes GDF-15 in human conditions specifically focusing on its association with muscle manifestations of sarcopenia, mitochondrial myopathy, and autoimmune and viral myositis. The use of GDF-15 as a widely applicable health biomarker to monitor muscle disease is discussed, and its potential as a therapeutic target is explored.


Subject(s)
Growth Differentiation Factor 15 , Muscle, Skeletal , Humans , Biomarkers , Cytokines/metabolism , Growth Differentiation Factor 15/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Transforming Growth Factor beta
11.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L722-L736, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2271860

ABSTRACT

SARS-CoV-2 viremia is associated with increased acute lung injury (ALI) and mortality in children and adults. The mechanisms by which viral components in the circulation mediate ALI in COVID-19 remain unclear. We tested the hypothesis that the SARS-CoV-2 envelope (E) protein induces Toll-like receptor (TLR)-mediated ALI and lung remodeling in a model of neonatal COVID-19. Neonatal C57BL6 mice given intraperitoneal E protein injections revealed a dose-dependent increase in lung cytokines [interleukin 6 (Il6), tumor necrosis factor (Tnfα), and interleukin 1 beta (Il1ß)] and canonical proinflammatory TLR signaling. Systemic E protein induced endothelial immune activation, immune cell influx, and TGFß signaling and lung matrix remodeling inhibited alveolarization in the developing lung. E protein-mediated ALI and transforming growth factor beta (TGFß) signaling was repressed in Tlr2-/-, but not Tlr4-/- mice. A single dose of intraperitoneal E protein injection induced chronic alveolar remodeling as evidenced by a decrease in radial alveolar counts and increase in mean linear intercepts. Ciclesonide, a synthetic glucocorticoid, inhibited E protein-induced proinflammatory TLR signaling and ALI. In vitro, E protein-mediated inflammation and cell death were TLR2-dependent in human primary neonatal lung endothelial cells and were rescued by ciclesonide. This study provides insight into the pathogenesis of ALI and alveolar remodeling with SARS-CoV-2 viremia in children, whereas revealing the efficacy of steroids.NEW & NOTEWORTHY We reveal that the envelope protein of SARS-CoV-2 mediates acute lung injury (ALI) and alveolar remodeling through Toll-like receptor activation, which is rescued by the glucocorticoid, ciclesonide.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Child , Humans , Mice , Acute Lung Injury/chemically induced , COVID-19/complications , Endothelial Cells/metabolism , Glucocorticoids , Lipopolysaccharides/adverse effects , Mice, Inbred C57BL , SARS-CoV-2/metabolism , Toll-Like Receptor 2 , Toll-Like Receptor 4/metabolism , Toll-Like Receptors , Transforming Growth Factor beta , Viremia/complications , Viral Envelope/metabolism
12.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2286427

ABSTRACT

BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) is a transmembrane pseudoreceptor structurally related to transforming growth factor (TGF)-ß type 1 receptors (TGF-ß1Rs). BAMBI lacks a kinase domain and functions as a TGF-ß1R antagonist. Essential processes such as cell differentiation and proliferation are regulated by TGF-ß1R signaling. TGF-ß is the best-studied ligand of TGF-ßRs and has an eminent role in inflammation and fibrogenesis. Liver fibrosis is the end stage of almost all chronic liver diseases, such as non-alcoholic fatty liver disease, and at the moment, there is no effective anti-fibrotic therapy available. Hepatic BAMBI is downregulated in rodent models of liver injury and in the fibrotic liver of patients, suggesting that low BAMBI has a role in liver fibrosis. Experimental evidence convincingly demonstrated that BAMBI overexpression is able to protect against liver fibrosis. Chronic liver diseases have a high risk of hepatocellular carcinoma (HCC), and BAMBI was shown to exert tumor-promoting as well as tumor-protective functions. This review article aims to summarize relevant studies on hepatic BAMBI expression and its role in chronic liver diseases and HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Activins , Transforming Growth Factor beta/metabolism , Liver Cirrhosis , Bone Morphogenetic Proteins , Membrane Proteins
13.
Sci Rep ; 13(1): 3596, 2023 03 03.
Article in English | MEDLINE | ID: covidwho-2253296

ABSTRACT

Immunotherapies based on antibody fragments have been developed and applied to human diseases, describing novel antibody formats. The vNAR domains have a potential therapeutic use related to their unique properties. This work used a non-immunized Heterodontus francisci shark library to obtain a vNAR with recognition of TGF-ß isoforms. The isolated vNAR T1 selected by phage display demonstrated binding of the vNAR T1 to TGF-ß isoforms (-ß1, -ß2, -ß3) by direct ELISA assay. These results are supported by using for the first time the Single-Cycle kinetics (SCK) method for Surface plasmon resonance (SPR) analysis for a vNAR. Also, the vNAR T1 shows an equilibrium dissociation constant (KD) of 9.61 × 10-8 M against rhTGF-ß1. Furthermore, the molecular docking analysis revealed that the vNAR T1 interacts with amino acid residues of TGF-ß1, which are essential for interaction with type I and II TGF-ß receptors. The vNAR T1 is the first pan-specific shark domain reported against the three hTGF-ß isoforms and a potential alternative to overcome the challenges related to the modulation of TGF-ß levels implicated in several human diseases such as fibrosis, cancer, and COVID-19.


Subject(s)
COVID-19 , Transforming Growth Factor beta , Humans , Molecular Docking Simulation , Computer Simulation , Immunotherapy
14.
Biomed Pharmacother ; 162: 114640, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2252874

ABSTRACT

A subset of severe COVID19 patients develop pulmonary fibrosis, but the pathophysiology of this complication is still unclear. We previously described the possibility to isolate lung mesenchymal cells (LMC) by culturing broncho-alveolar lavage (BAL) cells from patients with pulmonary fibrosis or chronic lung allograft dysfunction. Aim of this study was to investigate the possibility to isolate and characterize LMC from BAL of patients that, two months after discharge for severe COVID19, show CT signs of post-COVID19 fibrosis (Post-COVID) and in some cases has been considered transplant indication. Results were compared with those from BAL of patients with collagen tissue disease-associated interstitial fibrosis (CTD-ILD). BAL fluid levels of TGFß, VEGF, TIMP2, RANTES, IL6, IL8, and PAI1 were assessed. LMC were cultured and expanded, phenotyped by flow cytometry, and tested for osteogenic and adipogenic differentiation. Finally, we tested immunomodulatory and proliferative capabilities, collagen I production + /- TGF-beta stimulation. BAL cytokine and growth factor levels were comparable in the two groups. Efficiency of isolation from BAL was 100% in post-COVID compared to 63% in CTD-ILD. LMC from post-COVID were positive for CD105, CD73, CD90, and negative for CD45, CD34, CD19 and HLA-DR as in CTD-ILD samples. Post-COVID LMC displayed higher collagen production with respect to CTD-ILD LMC. Immunomodulatory capacity towards lymphocytes was very low, while Post-COVID LMC significantly upregulated pro-inflammatory cytokine production by healthy PBMCs. Our preliminary data suggest that LMC from post-COVID19 fibrosis patients share several features with CTD-ILD ones but might have a higher response to fibrogenic signals and pro-inflammatory profile.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Pulmonary Fibrosis , Humans , Lung , Fibrosis , Cytokines , Transforming Growth Factor beta
15.
Sci Rep ; 13(1): 2128, 2023 02 06.
Article in English | MEDLINE | ID: covidwho-2267535

ABSTRACT

Lung fibrosis, including idiopathic pulmonary fibrosis, is an intractable disease accompanied by an irreversible dysfunction in the respiratory system. Its pathogenesis involves the transforming growth factorß (TGFß)-induced overproduction of the extracellular matrix from fibroblasts; however, limited countermeasures have been established. In this study, we identified osa-miR172d-5p, a plant-derived microRNA (miR), as a potent anti-fibrotic miR. In silico analysis followed by an in vitro assay based on human lung fibroblasts demonstrated that osa-miR172d-5p suppressed the gene expression of TGF-ß activated kinase 1 (MAP3K7) binding protein 1 (Tab1). It also suppressed the TGFß-induced fibrotic gene expression in human lung fibroblasts. To assess the anti-fibrotic effect of osa-miR172d-5p, we established bleomycin-induced lung fibrosis models to demonstrate that osa-miR172d-5p ameliorated lung fibrosis. Moreover, it suppressed Tab1 expression in the lung tissues of bleomycin-treated mice. In conclusion, osa-miR172d-5p could be a potent candidate for the treatment of lung fibrosis, including idiopathic pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , MicroRNAs , Humans , Mice , Animals , MicroRNAs/metabolism , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Fibrosis , Bleomycin/toxicity , Bleomycin/metabolism , Fibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
16.
Inflammopharmacology ; 31(3): 1167-1182, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2257642

ABSTRACT

The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-ß (TGF-ß) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-ß, interleukins (IL-6 and IL-1ß), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-ß/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Humans , Thalidomide/therapeutic use , Thalidomide/metabolism , Thalidomide/pharmacology , Pandemics , COVID-19/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Inflammation/metabolism , Transforming Growth Factor beta/metabolism , Lung
17.
Biomed Pharmacother ; 161: 114481, 2023 May.
Article in English | MEDLINE | ID: covidwho-2254896

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to pose threats to public health. The clinical manifestations of lung pathology in COVID-19 patients include sustained inflammation and pulmonary fibrosis. The macrocyclic diterpenoid ovatodiolide (OVA) has been reported to have anti-inflammatory, anti-cancer, anti-allergic, and analgesic activities. Here, we investigated the pharmacological mechanism of OVA in suppressing SARS-CoV-2 infection and pulmonary fibrosis in vitro and in vivo. Our results revealed that OVA was an effective SARS-CoV-2 3CLpro inhibitor and showed remarkable inhibitory activity against SARS-CoV-2 infection. On the other hand, OVA ameliorated pulmonary fibrosis in bleomycin (BLM)-induced mice, reducing inflammatory cell infiltration and collagen deposition in the lung. OVA decreased the levels of pulmonary hydroxyproline and myeloperoxidase, as well as lung and serum TNF-ɑ, IL-1ß, IL-6, and TGF-ß in BLM-induced pulmonary fibrotic mice. Meanwhile, OVA reduced the migration and fibroblast-to-myofibroblast conversion of TGF-ß1-induced fibrotic human lung fibroblasts. Consistently, OVA downregulated TGF-ß/TßRs signaling. In computational analysis, OVA resembles the chemical structures of the kinase inhibitors TßRI and TßRII and was shown to interact with the key pharmacophores and putative ATP-binding domains of TßRI and TßRII, showing the potential of OVA as an inhibitor of TßRI and TßRII kinase. In conclusion, the dual function of OVA highlights its potential for not only fighting SARS-CoV-2 infection but also managing injury-induced pulmonary fibrosis.


Subject(s)
COVID-19 , Diterpenes , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , Lung , Diterpenes/adverse effects , Bleomycin/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Fibroblasts , Signal Transduction
18.
Am J Chin Med ; 51(3): 651-676, 2023.
Article in English | MEDLINE | ID: covidwho-2269325

ABSTRACT

Pulmonary fibrosis (PF) is a progressive pulmonary disease with no effective treatment and high mortality. Resveratrol has shown promising benefits in the treatment of PF. However, the probable efficacy and underlying mechanism of resveratrol in PF treatment remain unclear. This study investigates the intervention effects and potential mechanisms underpinning the treatment of PF with resveratrol. The histopathological analysis of lung tissues in PF rats showed that resveratrol improved collagen deposition and reduced inflammation. Resveratrol decreased the levels of collagen, glutathione, superoxide dismutase, myeloperoxidase, and hydroxyproline, lowered total anti-oxidant capacity, and suppressed the migration of TGF-[Formula: see text]1 and LPS-induced 3T6 fibroblasts. With resveratrol intervention, the protein and RNA expressions of TGF-[Formula: see text]1, a-SMA, Smad3/4, p-Smad3/4, CTGF, and p-ERK1/2 were markedly downregulated. Similarly, the protein and RNA expression levels of Col-1 and Col-3 were significantly downregulated. However, Smad7 and ERK1/2 were evidently upregulated. The protein and mRNA expression levels of TGF-[Formula: see text], Smad, and p-ERK correlated positively with the lung index, while the protein and mRNA expression levels of ERK correlated negatively with the lung index. These results reveal that resveratrol may have therapeutic effects on PF by reducing collagen deposition, oxidation, and inflammation. The mechanism is associated with the regulation of the TGF-[Formula: see text]/Smad/ERK signaling pathway.


Subject(s)
Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction , Transforming Growth Factor beta/metabolism , Inflammation , RNA, Messenger , RNA/adverse effects
19.
Biomolecules ; 13(1)2022 12 24.
Article in English | MEDLINE | ID: covidwho-2235322

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious inflammatory lung disorder and a complication of SARS-CoV-2 infection. In patients with severe SARS-CoV-2 infection, the transition to ARDS is principally due to the occurrence of a cytokine storm and an exacerbated inflammatory response. The effectiveness of ultra-micronized palmitoylethanolamide (PEA-um) during the earliest stage of COVID-19 has already been suggested. In this study, we evaluated its protective effects as well as the effectiveness of its congener, 2-pentadecyl-2-oxazoline (PEA-OXA), using in vitro models of acute lung injury. In detail, human lung epithelial cells (A549) activated by polyinosinic-polycytidylic acid (poly-(I:C)) or Transforming Growth Factor-beta (TGF-ß) were treated with PEA-OXA or PEA. The release of IL-6 and the appearance of Epithelial-Mesenchymal Transition (EMT) were measured by ELISA and immunofluorescence assays, respectively. A possible mechanism of action for PEA-OXA and PEA was also investigated. Our results showed that both PEA-OXA and PEA were able to counteract poly-(I:C)-induced IL-6 release, as well as to revert TGF-ß-induced EMT. In addition, PEA was able to produce an "entourage" effect on the levels of the two endocannabinoids AEA and 2-AG, while PEA-OXA only increased PEA endogenous levels, in poly-(I:C)-stimulated A549 cells. These results evidence for the first time the superiority of PEA-OXA over PEA in exerting protective effects and point to PEA-OXA as a new promising candidate in the management of acute lung injury.


Subject(s)
Acute Lung Injury , COVID-19 , Humans , Interleukin-6 , SARS-CoV-2 , Transforming Growth Factor beta , Acute Lung Injury/drug therapy
20.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-2216276

ABSTRACT

Pregnancy is characterized by significant immunological changes and a cytokine profile, as well as vitamin deficiencies that can cause problems for the correct development of a fetus. Defensins are small antimicrobial peptides that are part of the innate immune system and are involved in several biological activities. Following that, this study aims to compare the levels of various cytokines and to investigate the role of defensins between pregnant women with confirmed COVID-19 infection and pregnant women without any defined risk factor. TNF-α, TGF-ß, IL-2 and IL-10, ß-defensins, have been evaluated by gene expression in our population. At the same time, by ELISA assay IL-6, IL-8, defensin alpha 1, defensin beta 1 and defensin beta 4 have been measured. The data obtained show that mothers affected by COVID-19 have an increase in pro-inflammatory factors (TNF-α, TGF-ß, IL-2, IL-6, IL-8) compared to controls; this increase could generate a sort of "protection of the fetus" from virus attacks. Contemporarily, we have an increase in the anti-inflammatory cytokine IL-10 and an increase in AMPs, which highlights how the mother's body is responding to the viral attack. These results allow us to hypothesize a mechanism of "trafficking" of antimicrobial peptides from the mother to the fetus that would help the fetus to protect itself from the infection in progress.


Subject(s)
COVID-19 , alpha-Defensins , beta-Defensins , Cytokines , Female , Humans , Interleukin-10 , Interleukin-2 , Interleukin-6 , Interleukin-8 , Pregnancy , Pregnant Women , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL