Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Med Mycol ; 61(6)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20234417

ABSTRACT

The decision to use voriconazole for suspected COVID-19-associated pulmonary aspergillosis (CAPA) is based on clinical judgement weighed against concerns about its potential toxicity. We assessed the safety profile of voriconazole for patients with suspected CAPA by conducting a retrospective study of patients across two intensive care units. We compared changes in any liver enzymes or bilirubin and any new or increasing corrected QT interval (QTc) prolongation following voriconazole use to patient baseline to indicate possible drug effect. In total, 48 patients with presumed CAPA treated with voriconazole were identified. Voriconazole therapy was administered for a median of 8 days (interquartile range [IQR] 5-22) and the median level was 1.86 mg/L (IQR 1.22-2.94). At baseline, 2% of patients had a hepatocellular injury profile, 54% had a cholestatic injury profile, and 21% had a mixed injury profile. There were no statistically significant changes in liver function tests over the first 7 days after voriconazole initiation. At day 28, there was a significant increase in alkaline phospahte only (81-122 U/L, P = 0.006), driven by changes in patients with baseline cholestatic injury. In contrast, patients with baseline hepatocellular or mixed injury had a significant decrease in alanine transaminase and aspartate transaminase. Baseline QTc was 437 ms and remained unchanged after 7 days of voriconazole therapy even after sensitivity analysis for concomitantly administered QT prolonging agents. Therefore, at the doses used in this study, we did not detect evidence of significant liver or cardiac toxicity related to voriconazole use. Such information can be used to assist clinicians in the decision to initiate such treatment.


Our study did not show significant voriconazole-related liver or cardiac side effects in a critically ill cohort of patients with suspected COVID-19-associated pulmonary aspergillosis. These findings may allay specific clinician concerns when commencing therapy for such patients.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Animals , Voriconazole/adverse effects , Antifungal Agents/adverse effects , Retrospective Studies , Triazoles/adverse effects , COVID-19/veterinary , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/veterinary
2.
Clin Drug Investig ; 43(5): 335-346, 2023 May.
Article in English | MEDLINE | ID: covidwho-2319264

ABSTRACT

BACKGROUND: Management of drug-drug interactions (DDIs) for ensitrelvir, a novel 3-chymotrypsin-like protease inhibitor of SARS-CoV-2 infection is crucial. A previous clinical DDI study of ensitrelvir with midazolam, a clinical index cytochrome P450 (CYP) 3A substrate, demonstrated that ensitrelvir given for 5 days orally with a loading/maintenance dose of 750/250 mg acted as a strong CYP3A inhibitor. OBJECTIVES: The objectives of this study were to investigate the effect of ensitrelvir on the pharmacokinetics of CYP3A substrates, dexamethasone, prednisolone and midazolam, and to assess the pharmacokinetics, safety, and tolerability of ensitrelvir following multiple-dose administration of ensitrelvir. METHODS: This was a Phase 1, multicenter, single-arm, open-label study in healthy Japanese adult participants. The effects of multiple doses of ensitrelvir in the fasted state on the pharmacokinetics of dexamethasone, prednisolone, and midazolam were investigated. Ensitrelvir was administered from Day 1 through Day 5, with a loading/maintenance dose of 750/250 mg for the dexamethasone and prednisolone cohorts whereas 375/125 mg for the midazolam cohort. Either dexamethasone, prednisolone, or midazolam was administered alone (Day - 2) or in combination with ensitrelvir (Day 5) in each of the cohorts. Additionally, dexamethasone or prednisolone was administered on Days 9 and 14. The pharmacokinetic parameters of ensitrelvir, dexamethasone, prednisolone, and midazolam were calculated based on their plasma concentration data with non-compartmental analysis. In safety assessments, the nature, frequency, and severity of treatment-emergent adverse events were evaluated and recorded. RESULTS: The area under the concentration-time curve (AUC) ratio of dexamethasone on Day 5 was 3.47-fold compared with the corresponding values for dexamethasone alone on Day - 2 and the effect diminished over time after the last dose of ensitrelvir. No clinically meaningful effect was observed for prednisolone. The AUC ratio of midazolam was 6.77-fold with ensitrelvir 375/125 mg suggesting ensitrelvir at 375/125 mg strongly inhibits CYP3A similar to that at 750/250 mg. No new safety signals with ensitrelvir were reported during the study. CONCLUSION: The inhibitory effect for CYP3A was confirmed after the last dose of ensitrelvir, and the effect diminished over time. In addition, ensitrelvir at 375/125 mg showed CYP3A inhibitory potential similar to that at 750/250 mg. These findings can be used as a clinical recommendation for prescribing ensitrelvir with regard to concomitant medications. CLINICAL TRIAL REGISTRATION: Japan Registry of Clinical Trials identifier: jRCT2031210202.


Subject(s)
COVID-19 , Cytochrome P-450 CYP3A Inhibitors , Indazoles , Adult , Humans , Area Under Curve , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/adverse effects , Dexamethasone/pharmacokinetics , Drug Interactions , East Asian People , Indazoles/adverse effects , Midazolam/pharmacokinetics , Prednisolone/pharmacokinetics , SARS-CoV-2 , Triazines/adverse effects , Triazoles/adverse effects
3.
ChemMedChem ; 18(6): e202200572, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2310186

ABSTRACT

Compounds containing arylpyrrole-, 1,2,4-triazole- and hydrazone structural frameworks have been widely studied and demonstrated to exhibit a wide range of pharmacological properties. Herein, an exploratory series of new 1,2,4-triazole derivatives designed by amalgamation of arylpyrrole and 1,2,4-triazole structural units via a hydrazone linkage is reported. The synthesised compounds were tested in vitro for their potential activity against Mycobacterium tuberculosis (MTB) H37 Rv strain. The most promising compound 13 - the derivative without the benzene ring appended to the pyrrole unit displayed acceptable activity (MIC90 =3.99 µM) against MTB H37 Rv, while other compounds from the series exhibited modest to weak antimycobacterial activity with MIC90 values in the range between 7.0 and >125 µM. Furthermore, in silico results, predicated using the SwissADME web tool, show that the prepared compounds display desirable ADME profile with parameters within acceptable range.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Microbial Sensitivity Tests , Structure-Activity Relationship
4.
Am J Case Rep ; 23: e936505, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-2278106

ABSTRACT

BACKGROUND Numerous treatment options are available for patients with multiple myeloma (MM). Because of the course of the disease, most patients will experience serial relapse or the MM will become refractory to most of these treatments, leaving patients with few or no treatment options over time. Selinexor, a treatment with a novel mechanism of action, is an oral selective inhibitor of nuclear export (SINE) compound that blocks exportin 1, the major nuclear exporter of tumor suppressor proteins. CASE REPORT In this case series, we report on treatment with the weekly oral administration of selinexor combined with bortezomib and dexamethasone (XVd) in 3 patients from Argentina who were heavily treated (5-7 prior therapies) for MM that relapsed or was refractory to each previous treatment. Two patients had the high-risk cytogenetic abnormality del(17p). All 3 patients experienced efficacy with XVd reaching a best response of partial response or very good partial response. These responses were consistent with those of patients from the BOSTON study who were treated with XVd but were less heavily pretreated (1-3 prior therapies) and had a shorter median time since diagnosis of MM (7 years vs 3.7 years). The 3 patients experienced adverse events (AEs) that included nausea, thrombocytopenia, asthenia, and fatigue, which were similar to the most commonly reported AEs associated with selinexor treatment. CONCLUSIONS With its oral administration, novel mechanism of action, and responses in heavily pretreated patients, selinexor may help to address an important clinical need in the treatment of patients with relapsed/refractory MM.


Subject(s)
Multiple Myeloma , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Argentina , Dexamethasone , Humans , Hydrazines , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/drug therapy , Triazoles
5.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2143396

ABSTRACT

1,2,3-triazoles are versatile building blocks with growing interest in medicinal chemistry. For this reason, organic chemistry focuses on the development of new synthetic pathways to obtain 1,2,3-triazole derivatives, especially with pyridine moieties. In this work, a novel series of 1,5-disubstituted-1,2,3-triazoles functionalized with pyrimidine nucleobases were prepared via 1,3-dipolar cycloaddition reaction in a regioselective manner for the first time. The N1-propargyl nucleobases, used as an alkyne intermediate, were obtained in high yields (87-92%) with a new two-step procedure that selectively led to the monoalkylated compounds. Then, FeCl3 was employed as an efficient Lewis acid catalyst for 1,3-dipolar cycloaddition between different aryl and benzyl azides and the N1-propargyl nucleobases previously synthesized. This new protocol allows the synthesis of a series of new 1,2,3-triazole derivatives with good to excellent yields (82-92%). The ADME (Absorption, Distribution, Metabolism, and Excretion) analysis showed good pharmacokinetic properties and no violations of Lipinsky's rules, suggesting an appropriate drug likeness for these new compounds. Molecular docking simulations, conducted on different targets, revealed that two of these new hybrids could be potential ligands for viral and bacterial protein receptors such as human norovirus capsid protein, SARS-CoV-2 NSP13 helicase, and metallo-ß-lactamase.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Triazoles/chemistry , Azides/chemistry
6.
Antimicrob Agents Chemother ; 66(10): e0063222, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2019711

ABSTRACT

Ensitrelvir is a novel selective inhibitor of the 3C-like protease of SARS-CoV-2, which is essential for viral replication. This phase 1 study of ensitrelvir assessed its safety, tolerability, and pharmacokinetics of single (part 1, n = 50) and multiple (part 2, n = 33) ascending oral doses. Effect of food on the pharmacokinetics of ensitrelvir, differences in pharmacokinetics of ensitrelvir between Japanese and white participants, and effect of ensitrelvir on the pharmacokinetics of midazolam (a cytochrome P450 3A [CYP3A] substrate) were also assessed. In part 1, Japanese participants were randomized to placebo or ensitrelvir at doses of 20, 70, 250, 500, 1,000, or 2,000 mg. In part 2, Japanese and white participants were randomized to placebo or once-daily ensitrelvir at loading/maintenance dose 375/125 mg or 750/250 mg for 5 days. Most treatment-related adverse events observed were mild in severity and were resolved without treatment. Plasma exposures showed almost dose proportionality, and geometric mean half-life of ensitrelvir following the single dose was 42.2 to 48.1 h. Food intake reduced Cmax and delayed Tmax of ensitrelvir but did not impact the area under the curve (AUC), suggesting suitability for administration without food restriction. Compared with Japanese participants, plasma exposures were slightly lower for white participants. Ensitrelvir affected the pharmacokinetics of CYP3A substrates because of increase in AUC of midazolam coadministered with ensitrelvir 750/250 mg on day 6. In conclusion, ensitrelvir was well-tolerated and demonstrated favorable pharmacokinetics, including a long half-life, supporting once-daily oral dosing. These results validate further assessments of ensitrelvir in participants with SARS-CoV-2 infection.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Indazoles , Triazines , Adult , Humans , Administration, Oral , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Area Under Curve , Cytochrome P-450 CYP3A , Dose-Response Relationship, Drug , Double-Blind Method , Enzyme Inhibitors , Healthy Volunteers , Midazolam/therapeutic use , Peptide Hydrolases , Protease Inhibitors , SARS-CoV-2 , Indazoles/pharmacokinetics , Indazoles/therapeutic use , Triazines/pharmacokinetics , Triazines/therapeutic use , Triazoles/pharmacokinetics , Triazoles/therapeutic use
7.
J Am Podiatr Med Assoc ; 112(2)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1988432

ABSTRACT

Toenail onychomycosis is a common condition that is equally challenging for podiatrists and patients. This case study documents a 26-year-old woman with bilateral total dystrophic onychomycosis of at least 5 years' duration. She had previously failed to respond to treatment with ciclopirox nail lacquer 8% and, despite hiding her condition with nail polish, was suffering from embarrassment, distress, and low self-esteem. At initial consultation, 100% of both great toenails was affected. After discussion of all treatment options, the patient opted for topical efinaconazole 10% solution, once daily for 48 weeks. Significant improvement was noted at the first (4-week) assessment period. This improvement was maintained through each subsequent virtual consultation, and complete cure was seen at a 30-week follow-up visit. To the author's knowledge, this is the first published report on the use of efinaconazole in total dystrophic onychomycosis. It suggests that the product may be effective in patients with even the most severe and treatment-recalcitrant disease, who are unwilling or unable to tolerate systemic antifungal therapy.


Subject(s)
Coronavirus , Foot Dermatoses , Onychomycosis , Administration, Topical , Adult , Antifungal Agents/therapeutic use , Female , Foot Dermatoses/drug therapy , Foot Dermatoses/microbiology , Humans , Onychomycosis/drug therapy , Onychomycosis/microbiology , Treatment Outcome , Triazoles
8.
Bull Exp Biol Med ; 173(1): 41-45, 2022 May.
Article in English | MEDLINE | ID: covidwho-1919840

ABSTRACT

We studied the effect of antiviral agent riamilovir on ADP-induced platelet aggregation in the absence and presence of LPS. Unlike acetylsalicylic acid (reference drug), riamilovir did not exhibit antiplatelet effect in vitro. However, it markedly suppressed platelet reactivity in LPS-treated blood samples and was 2.2-fold superior to acetylsalicylic acid in terms of IC50 value. In in vivo experiments, riamilovir under conditions of hypercytokinemia blocked platelet aggregation in rats by 64%.


Subject(s)
Lipopolysaccharides , Platelet Aggregation Inhibitors , Animals , Antiviral Agents/pharmacology , Aspirin/pharmacology , Blood Platelets , Lipopolysaccharides/pharmacology , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Rats , Triazines , Triazoles
9.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915276

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
10.
J Antimicrob Chemother ; 77(9): 2500-2505, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-1901192

ABSTRACT

BACKGROUND: Isavuconazole is an antifungal drug used for treatment of invasive fungal infections. Critically ill COVID-19 and influenza patients require extracorporeal membrane oxygenation (ECMO) in cases with severe acute respiratory distress syndrome and have risk factors for invasive pulmonary aspergillosis. Little is known about isavuconazole plasma concentrations during ECMO. OBJECTIVES: To determine isavuconazole plasma concentrations in seven patients treated with intravenous isavuconazole under ECMO and the influence of the ECMO circuit immediately after the first isavuconazole dose. METHODS: Critically ill patients treated with isavuconazole (standard doses) and ECMO were included in this study. Sixty-four blood samples used for measurement of isavuconazole concentrations were collected at several timepoints starting 2 h after the first isavuconazole dose up to 168 h. An additional 27 blood samples were drawn from the inflow and outflow line of the membrane oxygenator to assess any potential isavuconazole clearance effect of the ECMO oxygenation device and the lines. RESULTS: Median isavuconazole trough levels above 1 µg/mL (min. 0.83, max. 1.73) or 2 µg/mL (min. 0.84, max. 2.97) were achieved 24 h or 96 h after the first dose of isavuconazole. The isavuconazole plasma concentrations pre (inflow line) and post (outflow line) the membrane oxygenator were directly correlated (ρ = 0.987, R2 = 0.994, P < 0.001). Post membrane oxygenator isavuconazole concentrations were directly correlated to contemporaneous samples obtained from the arterial lines of patients (ρ = 0.942, R2 = 0.945, P < 0.001). CONCLUSIONS: Isavuconazole concentrations might be influenced by the higher volume of distribution due to ECMO therapy, but were not altered by the ECMO oxygenator and achieved median plasma concentrations >1 µg/mL 24 h after the first loading dose.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Critical Illness/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Humans , Nitriles , Pyridines , Triazoles/therapeutic use
11.
Int J Infect Dis ; 120: 177-178, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1889485

ABSTRACT

The surge of COVID-19 associated Mucormycosis (CAM) in India during the second wave of COVID-19 led to lack of availability of amphotericin B(AmB). We retrospectively evaluated the outcome in 28 consecutive patients with CAM who received posaconazole (PCZ) or isavuconazole (ISVCZ) as sole or predominant therapy, based on factors like availability, affordability, site of infection or lack of treatment response. Therapeutic drug monitoring was used for PCZ in all cases & for ISVCZ in some cases. Higher trough levels were aimed to ensure therapeutic effect. Overall, 16 patients were cured, 5 patients improved, 6 patients died, of which 2 deaths were attributable to mucormycosis and 1 patient was lost to follow-up. The outcomes and survival were comparable to those reported in the literature. Although wider applicability of these results cannot be assumed, it leads to a speculation that treatment of mucormycosis with PCZ or ISVCZ, without AmB, is possible.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Mucormycosis , Antifungal Agents/therapeutic use , COVID-19/complications , Humans , Mucormycosis/drug therapy , Mucormycosis/microbiology , Nitriles , Pyridines , Retrospective Studies , Triazoles
12.
Comput Biol Med ; 146: 105572, 2022 07.
Article in English | MEDLINE | ID: covidwho-1814281

ABSTRACT

BACKGROUND: The SARS-CoV-2 main protease (Mpro) is an attractive target in the COVID-19 drug development process. It catalyzes the polyprotein's translation from viral RNA and specifies a particular cleavage site. Due to the absence of identical cleavage specificity in human cell proteases, targeting Mpro with chemical compounds can obstruct the replication of the virus. METHODS: To explore the potential binding mechanisms of 1,2,3-triazole scaffolds in comparison to co-crystallized inhibitors 11a and 11b towards Mpro, we herein utilized molecular dynamics and enhanced sampling simulation studies. RESULTS AND CONCLUSION: All the 1,2,3-triazole scaffolds interacted with catalytic residues (Cys145 and His41) and binding pocket residues of Mpro involving Met165, Glu166, Ser144, Gln189, His163, and Met49. Furthermore, the adequate binding free energy and potential mean force of the topmost compound 3h was comparable to the experimental inhibitors 11a and 11b of Mpro. Overall, the current analysis could be beneficial in developing the SARS-CoV-2 Mpro potential inhibitors.


Subject(s)
COVID-19 Drug Treatment , Molecular Dynamics Simulation , Benchmarking , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Triazoles , Viral Nonstructural Proteins/chemistry
13.
Lancet Psychiatry ; 9(3): 199-210, 2022 03.
Article in English | MEDLINE | ID: covidwho-1747370

ABSTRACT

BACKGROUND: There are no approved pharmacological therapies to support treatment of the core communication and socialisation difficulties associated with autism spectrum disorder in adults. We aimed to assess the efficacy, safety, and pharmacokinetics of balovaptan, a vasopressin 1a receptor antagonist, versus placebo in autistic adults. METHODS: V1aduct was a phase 3, randomised, placebo-controlled, double-blind trial, conducted at 46 sites across six countries (the USA, the UK, France, Italy, Spain, and Canada). Eligible participants were aged 18 years or older with an intelligence quotient (IQ) of 70 or higher, and met the criteria for moderate-to-severe autism spectrum disorder (DSM-5 and Autism Diagnostic Observation Schedule). Participants were randomly allocated (1:1), with an independent interactive voice or web-based response system, to receive balovaptan (10 mg) or placebo daily for 24 weeks. Randomisation was stratified by an individual's baseline Vineland-II two-domain composite (2DC) score (<60 or ≥60), sex, region (North America or rest of world), and age (<25 years or ≥25 years). Participants, study site personnel, and the sponsor were masked to treatment assignment. The primary endpoint was change from baseline in Vineland-II 2DC score (the mean composite score across the Vineland-II socialisation and communication domains) at week 24. The primary analysis was done with ANCOVA in the intention-to-treat population. The V1aduct study was terminated for futility after around 50% of participants completed the week 24 visit. This trial is registered with ClinicalTrials.gov (NCT03504917). FINDINGS: Between Aug 8, 2018, and July 1, 2020, 540 people were screened for eligibility, of whom 322 were allocated to receive balovaptan (164 [51%]) or placebo (158 [49%]). One participant from the balovaptan group was not treated before trial termination and was excluded from the analysis. 60 participants in the balovaptan group and 55 in the placebo group discontinued treatment before week 24. The sample consisted of 64 (20%) women and 257 (80%) men, with 260 (81%) participants from North America and 61 (19%) from Europe. At baseline, mean age was 27·6 years (SD 9·7) and mean IQ score was 104·8 (18·1). Two (1%) participants were American Indian or Alaska Native, eight (2%) were Asian, 15 (5%) were Black or African American, 283 (88%) were White, four (1%) were of multiple races, and nine (3%) were of unknown race. Mean baseline Vineland-II 2DC scores were 67·2 (SD 15·3) in the balovaptan group and 66·2 (17·7) in the placebo group. The interim futility analysis showed no improvement for balovaptan versus placebo in terms of Vineland-II 2DC score at week 24 compared with baseline, with a least-squares mean change of 2·91 (SE 1·52) in the balovaptan group (n=79) and 4·75 (1·60) in the placebo group (n=71; estimated treatment difference -1·84 [95% CI -5·15 to 1·48]). In the final analysis, mean change from baseline in Vineland-II 2DC score at week 24 was 4·56 (SD 10·85) in the balovaptan group (n=111) and 6·83 (12·18) in the placebo group (n=99). Balovaptan was well tolerated, with similar proportions of participants with at least one adverse event in the balovaptan group (98 [60%] of 163) and placebo group (104 [66%] of 158). The most common adverse events were nasopharyngitis (14 [9%] in the balovaptan group and 19 [12%] in the placebo group), diarrhoea (11 [7%] and 14 [9%]), upper respiratory tract infection (ten [6%] and nine [6%]), insomnia (five [3%] and eight [5%]), oropharyngeal pain (five [3%] and eight [5%]), and dizziness (two [1%] and ten [6%]). Serious adverse events were reported for two (1%) participants in the balovaptan group (one each of suicidal ideation and schizoaffective disorder), and five (3%) participants in the placebo group (one each of suicidal ideation, panic disorder, limb abscess, urosepsis, colitis [in the same participant with urosepsis], and death by suicide). No treatment-related deaths occurred. INTERPRETATION: Balovaptan did not improve social communication in autistic adults. This study provides insights into challenges facing autism spectrum disorder trials, including the considerable placebo response and the selection of appropriate outcome measures. FUNDING: F Hoffmann-La Roche.


Subject(s)
Antidiuretic Hormone Receptor Antagonists/administration & dosage , Autism Spectrum Disorder/drug therapy , Benzodiazepines/administration & dosage , Communication Disorders/drug therapy , Pyridines/administration & dosage , Triazoles/administration & dosage , Adult , Antidiuretic Hormone Receptor Antagonists/adverse effects , Autism Spectrum Disorder/complications , Benzodiazepines/adverse effects , Communication Disorders/etiology , Double-Blind Method , Female , Humans , Male , Pyridines/adverse effects , Treatment Outcome , Triazoles/adverse effects
14.
Expert Opin Pharmacother ; 23(5): 543-549, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1662063

ABSTRACT

INTRODUCTION: Invasive aspergillosis is associated with high morbidity and mortality in immunocompromised patients. It is now increasingly reported in critically ill patients, including those with respiratory viral infections, such as influenza and COVID-19. Antifungal management is challenging due to diagnostic delay, adverse drug reactions, drug-drug interactions, narrow therapeutic window, and the emergence of resistance. Isavuconazole is the most recent FDA approved azole for the treatment of invasive aspergillosis, with data continuing to accumulate. AREAS COVERED: The authors review the safety and efficacy of isavuconazole in the management of invasive aspergillosis based on the currently available evidence. The authors also report on the structure, mechanism of action, pharmacokinetic properties, in vitro and in vivo studies as well as clinical safety and efficacy reports of isavuconazole since its FDA approval. EXPERT OPINION: Isavuconazole is non-inferior to voriconazole and is a safe, effective, and better tolerated option for the treatment of invasive aspergillosis. It offers several advantages over other antifungal agents, including having a better adverse event profile with respect to hepatotoxicity, neuro-visual toxicity, QTc prolongation, as well as a stable pharmacokinetic profile obviating the need for therapeutic drug monitoring. Further studies are needed to evaluate its performance in prophylaxis against invasive aspergillosis as well as in the treatment of aspergillosis in critically ill patients without underlying cancer or transplant.


Subject(s)
Aspergillosis , COVID-19 Drug Treatment , Antifungal Agents/adverse effects , Aspergillosis/chemically induced , Aspergillosis/drug therapy , Delayed Diagnosis , Humans , Nitriles/adverse effects , Pyridines , Triazoles/adverse effects
15.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648677

ABSTRACT

The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/drug effects , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Pyrimidines/pharmacology , Triazoles/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amides/pharmacology , COVID-19/metabolism , Catalytic Domain/drug effects , Computational Biology/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazines/pharmacology , Pyrimidines/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/drug effects , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triazoles/chemistry , Virus Replication/drug effects , COVID-19 Drug Treatment
16.
Chest ; 161(1): e5-e11, 2022 01.
Article in English | MEDLINE | ID: covidwho-1595933

ABSTRACT

CASE PRESENTATION: A 67-year-old obese man (BMI 38.0) with type 2 diabetes mellitus (DM), chronic atrial fibrillation, and chronic lymphocytic leukemia stage II, stable for 8 years after chemotherapy, and a history of smoking presented to the ED with progressive dyspnea and fever due to SARS-CoV-2 infection. He was admitted to a general ward and treated with dexamethasone (6 mg IV once daily) and oxygen. On day 3 of hospital admission, he became progressively hypoxemic and was admitted to the ICU for invasive mechanical ventilation. Dexamethasone treatment was continued, and a single dose of tocilizumab (800 mg) was administered. On day 9 of ICU admission, voriconazole treatment was initiated after tracheal white plaques at bronchoscopy, suggestive of invasive Aspergillus tracheobronchitis, were noticed. However, his medical situation dramatically deteriorated.


Subject(s)
Acute Kidney Injury/virology , Antifungal Agents/therapeutic use , COVID-19/complications , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Aged , Amphotericin B/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Atrial Fibrillation/complications , Bronchoscopy , Dexamethasone/therapeutic use , Diabetes Mellitus, Type 2/complications , Fatal Outcome , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Male , Nitriles/therapeutic use , Obesity/complications , Oxygen Inhalation Therapy , Pyridines/therapeutic use , Respiration, Artificial , SARS-CoV-2 , Smoking/adverse effects , Tomography, X-Ray Computed , Triazoles/therapeutic use , Voriconazole/therapeutic use
17.
Mycoses ; 65(3): 312-316, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1583472

ABSTRACT

BACKGROUND: Along with COVID-19 pandemic, India has faced an outbreak of COVID-19-associated mucormycosis (CAM). Due to restricted availability of amphotericin B during this outbreak, clinicians were forced to use posaconazole or isavuconazole preparations as first-line or alternate therapy in many patients. We planned an early monitoring of posaconazole trough level while using delayed release (DR) tablet as first-line or alternate therapy. OBJECTIVES: Primary objective of the study was to determine percentage of patients achieving arbitrarily decided therapeutic posaconazole levels (≥1.2 µg/ml) after using standard dosages of posaconazole. Secondary objective was to identify potential factors associated with sub-therapeutic posaconazole levels. METHODS: We performed retrospective chart review of the hospitalised patients, who received posaconazole DR tablet as first-line or alternate therapy to treat CAM during outbreak period (March 1 to May 31, 2021). High-performance liquid chromatographic (HPLC) method was used to measure trough level of posaconazole. RESULTS: Posaconazole serum levels of 29 patients were analysed, who received posaconazole DR tablet. Majority (n = 23) were male with the median (range) age 53 (24-86) years. The mean (SD) posaconazole level was 1.66 (0.76) µg/ml. Sub-therapeutic posaconazole trough level was observed in 7 (24.1%) patients. Relatively younger patients were associated with lower posaconazole level (p = .046). Except two patients, all the patients tolerated posaconazole well. CONCLUSIONS: The study supports the posaconazole trough level measurement on day 4 while using posaconazole DR tablet as first-line or alternate therapy to treat mucormycosis during limited supply of amphotericin B.


Subject(s)
COVID-19 , Mucormycosis , Administration, Oral , Antifungal Agents/therapeutic use , Drug Monitoring , Female , Humans , Male , Middle Aged , Mucormycosis/drug therapy , Pandemics , Retrospective Studies , SARS-CoV-2 , Tablets , Triazoles
18.
Mol Cancer Res ; 20(3): 446-455, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1518187

ABSTRACT

AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting.In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS: Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.


Subject(s)
Aniline Compounds/therapeutic use , Benzocycloheptenes/therapeutic use , Lysosomes/drug effects , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrazines/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Triazoles/therapeutic use , Aniline Compounds/pharmacology , Autophagy , Benzocycloheptenes/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Signal Transduction , Transfection , Triazoles/pharmacology , Axl Receptor Tyrosine Kinase
19.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1470936

ABSTRACT

The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Triazoles/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Benzocycloheptenes/chemistry , Benzocycloheptenes/metabolism , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Databases, Chemical , Half-Life , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , Protein Binding , Quantitative Structure-Activity Relationship , SARS-CoV-2/isolation & purification , Triazoles/metabolism , Triazoles/therapeutic use , COVID-19 Drug Treatment
20.
Eur J Med Chem ; 221: 113494, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1446590

ABSTRACT

In the search for new anti-influenza virus (IV) compounds, we have identified the 1,2,4-triazolo[1,5-a]pyrimidine (TZP) as a very suitable scaffold to obtain compounds able to disrupt IV RNA-dependent RNA polymerase (RdRP) PA-PB1 subunits heterodimerization. In this work, in order to acquire further SAR insights for this class of compounds and identify more potent derivatives, we designed and synthesized additional series of analogues to investigate the role of the substituents around the TZP core. To this aim, we developed four facile and efficient one-step procedures for the synthesis of 5-phenyl-, 6-phenyl- and 7-phenyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines, and 2-amino-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Two analogues having the ethyl carboxylate moiety at the C-2 position of the TZP were also prepared in good yields. Then, the scaffolds herein synthesized and two previous scaffolds were functionalized and evaluated for their anti-IAV activity, leading to the identification of compound 22 that showed both anti-PA-PB1 (IC50 = 19.5 µM) and anti-IAV activity (EC50 = 16 µM) at non-toxic concentrations, thus resulting among the most active TZP derivatives reported to date by us. A selection of the synthesized compounds, along with a set of in-house available analogues, was also tested against SARS-CoV-2. The most promising compound 49 from this series displayed an EC50 value of 34.47 µM, highlighting the potential of the TPZ scaffold in the search for anti-CoV agents.


Subject(s)
Antiviral Agents/pharmacology , Protein Multimerization/drug effects , Pyrimidines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Triazoles/pharmacology , Viral Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Chlorocebus aethiops , Dogs , Drug Design , HEK293 Cells , Humans , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Pyrimidines/chemical synthesis , SARS-CoV-2/drug effects , Triazoles/chemical synthesis , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL