Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Int J Infect Dis ; 130 Suppl 1: S25-S29, 2023 May.
Article in English | MEDLINE | ID: covidwho-2317563

ABSTRACT

OBJECTIVES: Although evidence is growing on the overall impact of the COVID-19 pandemic on tuberculosis (TB) services, global studies based on national data are needed to better quantify the extent of the impact and the countries' preparedness to tackle the two diseases. The aim of this study was to compare the number of people with new diagnoses or recurrence of TB disease, the number of drug-resistant (DR)-TB, and the number of TB deaths in 2020 vs 2019 in 11 countries in Europe, Northern America, and Australia. METHODS: TB managers or directors of national reference centers of the selected countries provided the agreed-upon variables through a validated questionnaire on a monthly basis. A descriptive analysis compared the incidence of TB and DR-TB and mortality of the pre-COVID-19 year (2019) vs the first year of the COVID-19 pandemic (2020). RESULTS: Comparing 2020 vs 2019, lower number of TB cases (new diagnosis or recurrence) was notified in all countries (except USA-Virginia and Australia), and fewer DR-TB notifications (apart from France, Portugal, and Spain). The deaths among TB cases were higher in 2020 compared to 2019 in most countries with three countries (France, The Netherlands, USA-Virginia) reporting minimal TB-related mortality. CONCLUSIONS: A comprehensive evaluation of medium-term impact of COVID-19 on TB services would benefit from similar studies in multiple settings and from global availability of treatment outcome data from TB/COVID-19 co-infected patients.


Subject(s)
COVID-19 , Tuberculosis, Miliary , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Europe/epidemiology , North America/epidemiology , Pandemics , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
2.
Int J Pharm ; 640: 123018, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2307575

ABSTRACT

Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Drug Delivery Systems
5.
J Pediatric Infect Dis Soc ; 11(Supplement_3): S67-S71, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2279316

ABSTRACT

The COVID-19 pandemic has set back the global tuberculosis (TB) response by several years. In 2020, access to TB prevention and care declined sharply, with TB notifications dropping by 18% compared to 2019. Declines were more pronounced in children, with a 24% drop in 0-14 year-olds and a 28% drop in 0-4 year-olds. As a result, in 2020 the number of deaths due to TB increased to 1.5 million across all ages, reversing a decade-long declining trend. Progress toward the UN High Level Meeting targets for 2022 is at risk, including the targets related to children for TB and drug-resistant TB treatments, and TB preventive therapy. Nonetheless, ending TB by 2030 as envisaged in the Sustainable Development Goals (SDGs) is still possible, but requires increased investments in accelerated case detection, subclinical TB, preventive therapy and an effective vaccine. Investing in TB could prepare the world better for fighting a future airborne pandemic.


Subject(s)
COVID-19 , Tuberculosis, Multidrug-Resistant , Tuberculosis , Child , Humans , Pandemics/prevention & control , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis/prevention & control , Tuberculosis, Multidrug-Resistant/drug therapy
7.
Indian J Tuberc ; 69 Suppl 2: S264-S266, 2022.
Article in English | MEDLINE | ID: covidwho-2264349

ABSTRACT

Diabetes mellitus (DM) and tuberculosis (TB) are worldwide health burdens post-COVID-19. TB is the second-leading cause of death by a single infectious microbe. There is much evidence around the world about the responsibility of TB-DM co-morbidity. Both TB and DM prevalence is high in low- and middle-income countries. Especially the elderly with diabetes are more prone to TB infection due to compromised immune systems. Diabetic patients are three times as likely to develop tuberculosis as non-diabetic patients. DM interferes with the status of TB and leads to undesirable outcomes in the treatment of TB. This may later lead to the development of multidrug-resistant tuberculosis (MDR-TB). The coexistence of TB and DM leads to a high mortality rate and therefore becomes an enormous challenge for the medical field. This viewpoint includes the most current information about TB and DM, disease complications, treatment strategies, challenges to be faced in disease management and the importance of TB-DM bidirectional screening in older adults, which helps in early detection and better treatment programme.


Subject(s)
COVID-19 , Diabetes Mellitus , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Aged , COVID-19/complications , COVID-19/epidemiology , Tuberculosis/complications , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Diabetes Mellitus/epidemiology , Tuberculosis, Multidrug-Resistant/complications , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Comorbidity
9.
PLoS One ; 18(2): e0281097, 2023.
Article in English | MEDLINE | ID: covidwho-2276478

ABSTRACT

BACKGROUND: Updated World Health Organization (WHO) treatment guidelines prioritize all-oral drug-resistant tuberculosis (DR-TB) regimens. Several poorly tolerated drugs, such as amikacin and para-aminosalicylic acid (PAS), remain treatment options for DR-TB in WHO-recommended longer regimens as Group C drugs. Incomplete treatment with anti-TB drugs increases the risk of treatment failure, relapse, and death. We determined whether missed doses of individual anti-TB drugs, and reasons for their discontinuation, varied in closely monitored hospital settings prior to the 2020 WHO DR-TB treatment guideline updates. METHODS: We collected retrospective data on adult patients with microbiologically confirmed DR-TB between 2008 and 2015 who were selected for a study of acquired drug resistance in the Western Cape Province of South Africa. Medical records through mid-2017 were reviewed. Patients received directly observed treatment during hospitalization at specialized DR-TB hospitals. Incomplete treatment with individual anti-TB drugs, defined as the failure to take medication as prescribed, regardless of reason, was determined by comparing percent missed doses, stratified by HIV status and DR-TB regimen. We applied a generalized mixed effects model. RESULTS: Among 242 patients, 131 (54%) were male, 97 (40%) were living with HIV, 175 (72%) received second-line treatment prior to first hospitalization, and 191 (79%) died during the study period. At initial hospitalization, 134 (55%) patients had Mycobacterium tuberculosis with resistance to rifampicin and isoniazid (multidrug-resistant TB [MDR-TB]) without resistance to ofloxacin or amikacin, and 102 (42%) had resistance to ofloxacin and/or amikacin. Most patients (129 [53%]) had multiple hospitalizations and DST changes occurred in 146 (60%) by the end of their last hospital discharge. Incomplete treatment was significantly higher for amikacin (18%), capreomycin (18%), PAS (17%) and kanamycin (16%) than other DR-TB drugs (P<0.001), including ethionamide (8%), moxifloxacin (7%), terizidone (7%), ethambutol (7%), and pyrazinamide (6%). Among the most frequently prescribed drugs, second-line injectables had the highest rates of discontinuation for adverse events (range 0.56-1.02 events per year follow-up), while amikacin, PAS and ethionamide had the highest rates of discontinuation for patient refusal (range 0.51-0.68 events per year follow-up). Missed doses did not differ according to HIV status or anti-TB drug combinations. CONCLUSION: We found that incomplete treatment for second-line injectables and PAS during hospitalization was higher than for other anti-TB drugs. To maximize treatment success, interventions to improve person-centered care and mitigate adverse events may be necessary in cases when PAS or amikacin (2020 WHO recommended Group C drugs) are needed.


Subject(s)
Aminosalicylic Acid , HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Adult , Humans , Male , Female , Antitubercular Agents/pharmacology , Retrospective Studies , Ethionamide/therapeutic use , South Africa/epidemiology , Amikacin/therapeutic use , Amikacin/pharmacology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Aminosalicylic Acid/therapeutic use , Ofloxacin/pharmacology , HIV Infections/drug therapy , HIV Infections/epidemiology , Hospitals , Microbial Sensitivity Tests
10.
MMWR Morb Mortal Wkly Rep ; 72(12): 304-308, 2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2260886

ABSTRACT

Mumbai, India's second largest city, has one of the highest prevalences of drug-resistant tuberculosis* (DRTB) in the world. Treatment for DRTB takes longer and is more complicated than treatment for drug-susceptible tuberculosis (TB). Approximately 300 persons receive a new DRTB diagnosis each year in Mumbai's Dharavi slum†; historically, fewer than one half of these patients complete DRTB treatment. As nationwide restrictions to mitigate the COVID-19 pandemic were implemented, a program to facilitate uninterrupted DRTB care for patients receiving treatment was also implemented. A comprehensive tool and risk assessment provided support to DRTB patients and linked those who relocated outside of Dharavi during the pandemic to DRTB care at their destination. During May 2020-September 2022, a total of 973 persons received DRTB treatment in Dharavi, including 255 (26%) who relocated during treatment. Overall, 25 (3%) DRTB patients were lost to follow-up, a rate substantially lower than the rate before the pandemic (18%). Proactive planning and implementation of simple tools retained patients on treatment during periods of travel restrictions and relocations, improving programmatic outcomes. This approach might aid public health programs serving migrant populations or patients receiving treatment for DRTB during public health emergencies.


Subject(s)
COVID-19 , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Pandemics , COVID-19/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis/drug therapy , Tuberculosis/epidemiology , India/epidemiology , Antitubercular Agents/therapeutic use
11.
Western Pac Surveill Response J ; 13(4): 1-12, 2022.
Article in English | MEDLINE | ID: covidwho-2274739

ABSTRACT

Background: Diagnosis and treatment of drug-resistant tuberculosis (DR-TB) have radically changed in accordance with recommendations from the World Health Organization (WHO) in the past decade, allowing rapid and simple diagnosis and shorter treatment duration with new and repurposed drugs. Methods: A descriptive analysis of the status and progress of DR-TB diagnosis and treatment in six priority countries in the Western Pacific Region was conducted using information from interviews with countries and the WHO TB database. Results: Over the past decade, the use of Xpert MTB/RIF has increased in the six priority countries, in parallel with implementation of national policies and algorithms to use Xpert MTB/RIF as an initial diagnostic test for TB and detection of rifampicin resistance. This has resulted in increases in the number of people diagnosed with multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB). Shorter treatment regimens with new and repurposed drugs have also been adopted for MDR/RR-TB cases, alongside a decentralized model of care, leading to improved treatment outcomes. Discussion: The Western Pacific Region has achieved considerable progress in the diagnosis and treatment of DR-TB, in line with the evolving WHO recommendations in the past decade. The continued commitment of Member States is needed to address remaining challenges, such as the impact of the coronavirus disease pandemic, suboptimal management and health system issues.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Treatment Outcome
12.
Int J Mycobacteriol ; 11(4): 343-348, 2022.
Article in English | MEDLINE | ID: covidwho-2163901

ABSTRACT

Mycobacterium tuberculosis is the leading cause of mortality worldwide due to a single bacterial pathogen. Of concern is the negative impact that the COVID-19 pandemic has had on the control of tuberculosis (TB) including drug-resistant forms of the disease. Antimicrobial resistance increases the likelihood of worsened outcomes in TB patients including treatment failure and death. Multidrug-resistant (MDR) strains, resistant to first-line drugs isoniazid and rifampin, and extensively drug-resistant (XDR) strains with further resistance to second-line drugs (SLD), threaten control programs designed to lower TB incidence and end the disease as a public health challenge by 2030, in accordance with UN Sustainable Development Goals. Tackling TB requires an understanding of the pathways through which drug resistance emerges. Here, the roles of acquired resistance mutation, and primary transmission, are examined with regard to XDR-TB. It is apparent that XDR-TB can emerge from MDR-TB through a small number of additional resistance mutations that occur in patients undergoing drug treatment. Rapid detection of resistance, to first-line drugs and SLD, at the initiation of and during treatment, and prompt adjustment of regimens are required to ensure treatment success in these patients. Primary transmission is predicted to make an increasing contribution to the XDR-TB caseload in the future. Much work is required to improve the implementation of the World Health Organization-recommended infection control practices and block onward transmission of XDR-TB patients to contacts including health-care workers. Finally, limiting background resistance to fluoroquinolones in pre-XDR strains of M. tuberculosis will necessitate better antimicrobial stewardship in the broader use of this drug class.


Subject(s)
COVID-19 , Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Pandemics , COVID-19/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Drug Resistance, Microbial , Drug Resistance, Multiple, Bacterial
13.
Front Cell Infect Microbiol ; 12: 943545, 2022.
Article in English | MEDLINE | ID: covidwho-2141706

ABSTRACT

Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Disease Management , Humans , Mycobacterium tuberculosis/genetics , Sputum , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
15.
Braz J Biol ; 84: e258258, 2022.
Article in English | MEDLINE | ID: covidwho-2054598

ABSTRACT

According to studies carried out, approximately 10 million people developed tuberculosis in 2018. Of this total, 1.5 million people died from the disease. To study the behavior of the genome sequences of Mycobacterium tuberculosis (MTB), the bacterium responsible for the development of tuberculosis (TB), an analysis was performed using k-mers (DNA word frequency). The k values ranged from 1 to 10, because the analysis was performed on the full length of the sequences, where each sequence is composed of approximately 4 million base pairs, k values above 10, the analysis is interrupted, as consequence of the program's capacity. The aim of this work was to verify the formation of the phylogenetic tree in each k-mer analyzed. The results showed the formation of distinct groups in some k-mers analyzed, taking into account the threshold line. However, in all groups, the multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains remained together and separated from the other strains.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Cluster Analysis , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/genetics , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Phylogeny , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
16.
Health Policy Plan ; 37(8): 979-989, 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2051393

ABSTRACT

Decentralized, person-centred models of care delivery for drug-resistant tuberculosis (DR-TB) continue to be under-resourced in high-burden TB countries. The implementation of such models-made increasingly urgent by the COVID-19 pandemic-are key to addressing gaps in DR-TB care. We abstracted data of rifampicin-resistant (RR)/multidrug-resistant tuberculosis (MDR-TB) patients initiated on treatment at 11 facilities between 2010 and 2017 in Sindh and Balochistan provinces of Pakistan. We analysed trends in treatment outcomes relating to programme expansion to peri-urban and rural areas and estimated driving distance from patient residence to treatment facility. Among the 5586 RR/MDR-TB patients in the analysis, overall treatment success decreased from 82% to 66% between 2010 and 2017, as the programme expanded. The adjusted risk ratio for unfavourable outcomes was 1.013 (95% confidence interval 1.005-1.021) for every 20 km of driving distance. Our analysis suggests that expanding DR-TB care to centralized hubs added to increased unfavourable outcomes for people accessing care in peri-urban and rural districts. We propose that as enrolments increase, expanding DR-TB services close to or within affected communities is essential.


Subject(s)
COVID-19 , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/therapeutic use , Humans , Pakistan , Pandemics , Politics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
18.
Microbiol Spectr ; 10(5): e0125222, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2029475

ABSTRACT

Tuberculosis (TB) remains one of the most important infectious diseases globally. Establishing a resistance profile from the initial TB diagnosis is a priority. Rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, and Whole Genome Sequencing (WGS) needs culture prior to next-generation sequencing (NGS), limiting their clinical value. Targeted sequencing (TS) from clinical samples avoids these drawbacks, providing a signature of genetic markers that can be associated with drug resistance and phylogeny. In this study, a proof-of-concept protocol was developed for detecting genomic variants associated with drug resistance and for the phylogenetic classification of Mycobacterium Tuberculosis (Mtb) in sputum samples. Initially, a set of Mtb reference strains from the WHO were sequenced (WGS and TS). The results from the protocol agreed >95% with WHO reported data and phenotypic drug susceptibility testing (pDST). Lineage genetics results were 100% concordant with those derived from WGS. After that, the TS protocol was applied to sputum samples from TB patients to detect resistance to first- and second-line drugs and derive phylogeny. The accuracy was >90% for all evaluated drugs, except Eto/Pto (77.8%), and 100% were phylogenetically classified. The results indicate that the described protocol, which affords the complete drug resistance profile and phylogeny of Mtb from sputum, could be useful in the clinical area, advancing toward more personalized and more effective treatments in the near future. IMPORTANCE The COVID-19 pandemic negatively affected the progress in accessing essential Tuberculosis (TB) services and reducing the burden of TB disease, resulting in a decreased detection of new cases and increased deaths. Generating molecular diagnostic tests with faster results without losing reliability is considered a priority. Specifically, developing an antimicrobial resistance profile from the initial stages of TB diagnosis is essential to ensure appropriate treatment. Currently available rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, limiting their clinical value. In this work, targeted sequencing on sputum samples from TB patients was used to identify Mycobacterium tuberculosis mutations in genes associated with drug resistance and to derive a phylogeny of the infecting strain. This protocol constitutes a proof-of-concept toward the goal of helping clinicians select a timely and appropriate treatment by providing them with actionable information beyond current molecular approaches.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Sputum , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Phylogeny , Microbial Sensitivity Tests , Reproducibility of Results , Genetic Markers , Pandemics , Tuberculosis/microbiology , Drug Resistance , Tuberculosis, Multidrug-Resistant/drug therapy
19.
Front Cell Infect Microbiol ; 12: 958240, 2022.
Article in English | MEDLINE | ID: covidwho-2022659

ABSTRACT

Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world's deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a "persister" state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Carbon , Drug Resistance , Drug Tolerance , Humans , Tuberculosis, Multidrug-Resistant/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL