Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 12: 750969, 2021.
Article in English | MEDLINE | ID: covidwho-1551506

ABSTRACT

The COVID-19 is an infectious disease caused by SARS-CoV-2 infection. A large number of clinical studies found high-level expression of pro-inflammatory cytokines in patients infected with SARS-CoV-2, which fuels the rapid development of the disease. However, the specific molecular mechanism is still unclear. In this study, we found that SARS-CoV-2 Nsp5 can induce the expression of cytokines IL-1ß, IL-6, TNF-α, and IL-2 in Calu-3 and THP1 cells. Further research found that Nsp5 enhances cytokine expression through activating the NF-κB signaling pathway. Subsequently, we investigated the upstream effectors of the NF-κB signal pathway on Nsp5 overexpression and discovered that Nsp5 increases the protein level of MAVS. Moreover, Nsp5 can promote the SUMOylation of MAVS to increase its stability and lead to increasing levels of MAVS protein, finally triggering activation of NF-κB signaling. The knockdown of MAVS and the inhibitor of SUMOylation treatment can attenuate Nsp5-mediated NF-κB activation and cytokine induction. We identified a novel role of SARS-CoV-2 Nsp5 to enhance cytokine production by activating the NF-κB signaling pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coronavirus 3C Proteases/immunology , Cytokines/biosynthesis , NF-kappa B/metabolism , SARS-CoV-2/immunology , Sumoylation/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Enzyme Activation/drug effects , HEK293 Cells , Humans , Immunity, Innate/immunology , Interleukin-1beta/biosynthesis , Interleukin-2/biosynthesis , Interleukin-6/biosynthesis , Signal Transduction/physiology , Sumoylation/drug effects , THP-1 Cells , Tumor Necrosis Factor-alpha/biosynthesis , Vero Cells
2.
Sci Rep ; 11(1): 20638, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1475483

ABSTRACT

The COVID-19 pandemic is an unprecedented threat to humanity that has provoked global health concerns. Since the etiopathogenesis of this illness is not fully characterized, the prognostic factors enabling treatment decisions have not been well documented. Accurately predicting the progression of the disease would aid in appropriate patient categorization and thus help determine the best treatment option. Here, we have introduced a proteomic approach utilizing data-independent acquisition mass spectrometry (DIA-MS) to identify the serum proteins that are closely associated with COVID-19 prognosis. Twenty-seven proteins were differentially expressed between severely ill COVID-19 patients with an adverse or favorable prognosis. Ingenuity Pathway Analysis revealed that 15 of the 27 proteins might be regulated by cytokine signaling relevant to interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF), and their differential expression was implicated in the systemic inflammatory response and in cardiovascular disorders. We further evaluated practical predictors of the clinical prognosis of severe COVID-19 patients. Subsequent ELISA assays revealed that CHI3L1 and IGFALS may serve as highly sensitive prognostic markers. Our findings can help formulate a diagnostic approach for accurately identifying COVID-19 patients with severe disease and for providing appropriate treatment based on their predicted prognosis.


Subject(s)
Biomarkers/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Gene Expression Profiling , Proteomics/methods , Chitinase-3-Like Protein 1/metabolism , Enzyme-Linked Immunosorbent Assay , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation , Humans , Inflammation , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , Prognosis , SARS-CoV-2 , Tumor Necrosis Factor-alpha/biosynthesis , Virus Diseases
3.
Medicine (Baltimore) ; 100(7): e24321, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1125485

ABSTRACT

ABSTRACT: Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 induces severe infection, and it is responsible for a worldwide disease outbreak starting in late 2019. Currently, there are no effective medications against coronavirus. In the present study, we utilized a holistic bioinformatics approach to study gene signatures of SARS-CoV- and SARS-CoV-2-infected Calu-3 lung adenocarcinoma cells. Through the Gene Ontology platform, we determined that several cytokine genes were up-regulated after SARS-CoV-2 infection, including TNF, IL6, CSF2, IFNL1, IL-17C, CXCL10, and CXCL11. Differentially regulated pathways were detected by the Kyoto Encyclopedia of Genes and Genomes, gene ontology, and Hallmark platform, including chemokines, cytokines, cytokine receptors, cytokine metabolism, inflammation, immune responses, and cellular responses to the virus. A Venn diagram was utilized to illustrate common overlapping genes from SARS-CoV- and SARS-CoV-2-infected datasets. An Ingenuity pathway analysis discovered an enrichment of tumor necrosis factor- (TNF-) and interleukin (IL)-17-related signaling in a gene set enrichment analysis. Downstream networks were predicted by the Database for Annotation, Visualization, and Integrated Discovery platform also revealed that TNF and TNF receptor 2 signaling elicited leukocyte recruitment, activation, and survival of host cells after coronavirus infection. Our discovery provides essential evidence for transcript regulation and downstream signaling of SARS-CoV and SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Chemokines/biosynthesis , Cytokines/biosynthesis , Inflammation Mediators/metabolism , Cell Line, Tumor , Chemokines/genetics , Cytokines/genetics , Gene Expression Profiling , Gene Ontology , Host-Pathogen Interactions , Humans , Interleukin-17/biosynthesis , Receptors, Tumor Necrosis Factor, Type II/biosynthesis , SARS-CoV-2 , Tumor Necrosis Factor-alpha/biosynthesis , Up-Regulation
4.
Clin Immunol ; 221: 108611, 2020 12.
Article in English | MEDLINE | ID: covidwho-856558

ABSTRACT

Since December 2019, Coronavirus Disease 2019 (COVID-19) has emerged as a global pandemic. We aimed to investigate the clinical characteristics and analyzed the risk factors for prolonged viral RNA shedding. We retrospectively collected data from 112 hospitalized COVID-19 patients in a single center in Wuhan, China. Factors associated with prolonged viral RNA shedding (≥28 days) were investigated. Forty-nine (43.8%) patients had prolonged viral RNA shedding. Patients with prolonged viral shedding were older and had a higher rate of hypertension. Proinflammatory cytokines, including interleukin-2R (IL-2R) and tumor necrosis factor-α (TNF-α), were significantly elevated in patients with prolonged viral shedding. Multivariate analysis revealed that hypertension, older age, lymphopenia and elevated serum IL-2R were independent risk factors for prolonged viral shedding. This comprehensive investigation revealed the distinct characteristics between patients with or without prolonged viral RNA shedding. Hypertension, older age, lymphopenia and high levels of proinflammatory cytokines may be correlated with prolonged viral shedding.


Subject(s)
COVID-19/virology , Cytokine Release Syndrome/virology , Diabetes Mellitus/virology , Hypertension/virology , Lymphopenia/virology , RNA, Viral/blood , SARS-CoV-2/pathogenicity , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/immunology , China , Comorbidity , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Diabetes Mellitus/diagnosis , Diabetes Mellitus/drug therapy , Diabetes Mellitus/immunology , Drug Combinations , Female , Hospitalization , Humans , Hydroxychloroquine/therapeutic use , Hypertension/diagnosis , Hypertension/drug therapy , Hypertension/immunology , Interferons/therapeutic use , Lopinavir/therapeutic use , Lymphopenia/diagnosis , Lymphopenia/drug therapy , Lymphopenia/immunology , Male , Middle Aged , Receptors, Interleukin-2/biosynthesis , Retrospective Studies , Risk Factors , Ritonavir/therapeutic use , Severity of Illness Index , Tumor Necrosis Factor-alpha/biosynthesis , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL